
Differentiable Path Tracing by Regularizing Discontinuities 
Peter Quinn1, Jérôme Parent-Lévesque2, Cengiz Oztireli3, Derek Nowrouzezahrai1 

1 McGill University, 2 Mila, Université de Montréal, 3 University of Cambridge, Google

Differentiable has found several interesting applications
in recent works: optimization of scene parameters [1],
inverse rendering, computer vision, and unsupervised ML
such as mesh reconstruction [2]. There are two discrete,
nondifferentiable steps in typical rendering that need to
be handled: edges of geometry, which cause
instantaneous changes in the image colour at object
boundaries, and determination of the surface closest to
the camera, which cause sharp changes in the image
where one object overlaps another.

Background

Results

Acknowledgements: McGill, NSERC, Facebook AI for PyTorch

Conclusion

We present a novel differentiable approach to path
tracing. We apply our approach to solve several inverse
rendering problems involving higher order light transport
effects, including camera effects. In future work, we
would like to improve the both the efficiency of our
differentiable renderer, increase the number of triangles
that can be handled and add refractive materials.

Abstract
Recently, viewing computer vision as an inverse rendering
problem has led to a growing interest in differentiable
rendering. We introduce a novel differentiable path
tracing algorithm where discontinuities in the rendering
process are regularized through blurring of the geometry.
Our differentiable renderer implements full global
illumination and has parameters for controlling the
regularization, which allows for some control over the
smoothness of the loss landscape. We successfully apply
our system to solve several examples of challenging
inverse rendering optimization problems that involve
more complex light transport scenarios that cannot be
handled by rasterization-based differentiable renderers.

Edge discontinues are handled by blurring triangles
according to a sigmoid function in the plane of the
triangle. The depth ordering discontinuity is handled by
taking a sum of all triangles along a ray weighted by their
distance. We implemented a renderer in Python using
the PyTorch library. PyTorch allows tracing 1000s of rays
in parallel on the GPU using tensors and gradients are
calculated automatically with PyTorch autograd.

Methodology

Fig. 2: Left: a typical image produced by a non differentiable 
renderer. Right: an example of the blur effects in the image used 
to make the rendering operation differentiable

See more at: 
https://youtu.be/Ee678lnKDAs
https://www.peterquinn.ca/diffren/examples.html

References:
[1] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen, "Differentiable monte 
carlo ray tracing through edge sampling," in SIGGRAPH Asia 2018 Technical 
Papers, 2018, p. 222: ACM.
[2] S. Liu, T. Li, W. Chen, and H. J. a. p. a. Li, "Soft Rasterizer: A 
Differentiable Renderer for Image-based 3D Reasoning," 2019.

Fig. 1: An image and a rendering of the gradients for each pixel of the image 
given a translation of the red icosahedron to the right

a)

b)

i) ii) iii) iv) v)
a) A white cube in a scene with significant indirect lighting is rotated to match the target image b) The aperture size of the camera is adjusted to match 
the depth of field effect in the target i) Starting position ii) Final position iii) Target position iv) Starting error v) Final error

https://youtu.be/Ee678lnKDAs
https://www.peterquinn.ca/diffren/examples.html

