
Regularizing Discontinuities in Ray

Traced Global Illumination for

Differentiable Rendering

by

Peter Quinn

Department of Electrical and Computer Engineering

McGill University, Montréal, QC

April 2021

A thesis submitted to McGill University in partial fulfillment of the requirements of the

degree of Master of Science (M.Sc.), Electrical Engineering.

Copyright c©Peter Quinn 2021

Abstract

In recent years, neural network based machine learning (ML) models have demonstrated

revolutionary performance in computer vision tasks, such as object recognition. These

methods typically focus on only 2D images and lack an understanding of the 3D world

that underlies the image. On the other hand, rendering, in the computer graphics field, is

the process of creating a 2D image from a digital description of a 3D scene.

Viewing computer vision as an inverse rendering problem has led to a growing in-

terest in differentiable rendering, the key idea being that perhaps by incorporating in-

formation about how 3D scenes result in 2D images, ML models that analyse 2D images

could be improved. Differentiable renderers, like traditional renderers, generate images

from digital descriptions of 3D scenes, but also allow for the computation of gradients

for the output image with respect to the various input parameters in the scene. These in-

put parameters can include the positions of objects, material properties, and camera pose.

The gradients can be used in end-to-end training of machine learning models, in appli-

cations such as single-view 3D object reconstruction, or analysis-by-synthesis approaches

for inverse graphics.

We introduce a novel differentiable path tracing algorithm where discontinuities in

the rendering process are regularized through a blurring of the geometry. Our differen-

tiable renderer implements full global illumination and has parameters for controlling the

regularization, which allows for control over the smoothness of the loss landscape. Ad-

ditionally, we also explore how differentiable renderers can be adapted to camera effects

such as motion blur and depth of field. We successfully apply our system to solve several

examples of challenging inverse rendering optimization problems that involve complex

light transport scenarios.

i

Résumé

Récemment, les modèles d’apprentissage automatique basés sur les réseaux neuronaux

ont démontré des performances révolutionnaires dans les tâches de vision par ordina-

teur telles que la reconnaissance d’objets. Ces méthodes se concentrent généralement

uniquement sur les images 2D et ne comprennent pas le monde 3D qui sous-tend l’image.

D’autre part, le rendu, dans le domaine de l’infographie, est le processus de création

d’une image 2D à partir d’une description numérique d’une scène 3D.

Le fait de considérer la vision par ordinateur comme un problème de rendu inverse

a conduit à un intérêt croissant pour le rendu différentiable, l’idée clé étant que peut-

être en incorporant des informations sur la façon dont les scènes 3D donnent des images

2D les modèles d’apprentissage automatique qui analysent les images 2D pourraient être

améliorés. Les systèmes de rendu différentiable, comme les systèmes de rendu tradi-

tionnels, génèrent des images à partir de descriptions numériques de scènes 3D, mais

permettent également de calculer des gradients pour l’image par rapport aux paramètres

définissant la scène. Ces paramètres d’entrée peuvent inclure les positions des objets, les

propriétés des matériaux, et la pose de la caméra. Les gradients peuvent être utilisés dans

l’entraı̂nement de modèles d’apprentissage automatique, dans des applications telles que

la reconstruction d’objets 3D à vue unique (‘single-view‘) ou des approches d’analyse par

synthèse pour le rendu inverse.

Nous introduisons un nouvel algorithme de traçage de chemin différentiable où les

discontinuités dans le processus de rendu sont régularisées par un flou de la géométrie.

Notre système de rendu différenciable implémente l’éclairage global et a des paramètres

pour contrôler la régularisation, ce qui permet de contrôler la régularité du terrain des

coûts. De plus, nous explorons comment les systèmes de rendu différenciable peuvent

être adaptés aux effets de caméra tels que le flou de mouvement et la profondeur de

champ. Nous appliquons avec succès notre système pour résoudre plusieurs exemples

de problèmes d’optimisation du rendu inverse impliquant des scénarios complexes de

transport de lumière.

ii

Acknowledgments

First and foremost, a huge thank you to my supervisor Derek Nowrouzezahrai. Your

insight and encouragement were essential in completing this work.

I would also like Cengiz Öztireli for taking the time to regularly share his experience,

ideas, and advice for this project with me.

I want to thank Jérôme Parent-Lévesque for his work and his help during this project.

This project would not have gotten started without you, nor would it have progressed as

far as it did.

Thank you to my lab mates, Adrien, Damien, Jack, Joey, Sayantan, and Yang yang,

as well as Krishna, for the many insightful discussions and advice during my time in the

lab.

Thank you to my parents, Janice and Jim. Your endless support helped make all this

possible. And last but not least thank you to my friends, who, just like for undergrad,

helped keep me sane during this degree.

Contribution of Authors

All chapters in this thesis were authored by Peter Quinn.

iii

Contents

1 Introduction 1

1.1 Contributions . 4

1.2 Thesis Overview . 5

2 Background 6

2.1 Rasterization . 6

2.2 Ray Tracing . 8

2.2.1 The Rendering Equation . 9

2.2.2 Solving the Rendering Equation . 13

2.3 Monte Carlo Integration . 15

2.3.1 Monte Carlo Integration in Rendering 17

2.4 Caustics and Light Tracing . 19

2.5 Camera Effects . 22

3 Differentiable Rendering 28

3.1 Discontinuities and Differentiability . 28

3.2 Related Work . 30

3.2.1 Rasterizers . 31

3.2.2 Ray Tracers . 33

3.3 Automatic Differentiation . 38

3.4 Applications . 40

4 Methodology 43

iv

4.1 Edge Discontinuity . 44

4.2 Occlusion Discontinuity . 46

4.3 Modifications to the Path Tracing Algorithm 47

4.4 Explicit Connections and Shadows . 50

4.5 Material Model . 51

4.6 Textures . 51

4.7 Camera Effects . 52

4.7.1 Depth of Field . 52

4.7.2 Motion Blur . 52

4.8 Caustics and Light Tracing . 53

5 Results 55

5.1 Forward Render Examples . 55

5.2 Optimizations . 56

5.2.1 Direct Lighting . 58

5.2.2 Higher-Order Light Transport . 59

5.2.3 Camera Effects . 60

5.2.4 Caustics . 62

5.3 Renderer Gradients . 64

5.4 Comparison with REDNER . 65

6 Discussion 69

6.1 Benefits . 69

6.1.1 Implementation . 69

6.1.2 Camera Effects . 71

6.2 Limitations . 71

6.3 Differentiable Renders in General . 73

6.3.1 Exact Gradients and Bias . 73

6.3.2 Inclusion of Occlusion Discontinuity Differentiability 74

v

6.3.3 Initialization . 75

6.3.4 Self Intersections . 75

6.4 Implicit Representations in Differentiable Rendering 76

7 Conclusion 79

7.1 Differentiable Rendering – Perspectives and Future Work 80

vi

List of Figures

1.1 Is this blue sphere shiny or painted? . 2

1.2 Comparison of Rasterization and Ray Tracing 4

1.3 An rendered image with discontinuities explained 5

2.1 A high-level overview of the programmable rasterization pipeline 7

2.2 Real vs Render Image Comparison . 8

2.3 Path tracing diagram . 10

2.4 Direct and Indirect Illumination . 11

2.5 Orientation of ωi and ωo around the shading point x 13

2.6 Reparameterization of incident light at point x in terms of outgoing radi-

ance at another point found using the ray tracing function. 14

2.7 Next Event Estimation Diagram . 19

2.8 Next event estimation geometry terms parameters 20

2.9 An example of a caustic . 21

2.10 Light paths in a scene with a glass sphere . 24

2.11 An example of depth of field . 25

2.12 An example of motion blur . 26

2.13 An example of camera effects in a Toy Story 4 27

3.1 Edge Discontinuities Diagram . 29

3.2 Occlusion Discontinuities . 30

3.3 Example from Soft Rasterizer . 32

3.4 An example from DIB-R . 33

3.5 Example from Redner . 34

3.6 Example from Path Space Differentiable Rendering 35

vii

3.7 Example from Mitsuba 2 . 36

3.8 An example from Radiative Back Propagation 37

3.9 An example from Unbiased Warped Area Sampling 38

3.10 Taxonomy of Differentiable Renderers . 39

3.11 Example application of Differentiable Rendering in Machine Learning . . . 41

3.12 Example of an Adversarial Classification . 42

4.1 Smoothed Edge Discontinuities . 44

4.2 Sampling Surfaces in Occlusion Discontinuities 48

5.1 The blur around the edges of the triangles decreases as σ decreases. 56

5.2 The blur over the depth of the objects decreases as γ decreases. 56

5.3 Optimize the diffuse albedo of all primitive in the scene. 58

5.4 Optimize the position of the camera. 59

5.5 Optimize the position of the light. 59

5.6 Optimize the position of an off screen object based on its shadow. 60

5.7 Optimize the rotation of the cube (3 degrees of freedom). 60

5.8 Optimize the texture on a surface that is only visible in a mirror-like surface. 61

5.9 Reconstructed Textures from Indirect Lighting 61

5.10 Optimize the distance of the focal point of the camera to match the depth

of field effect. 62

5.11 Optimize to determine the vertices and velocity of the object in an image

with significant motion blur. 62

5.12 Snapshots from the motion blur geometry optimization, with no motion

blur. Not used in the optimization process. 63

5.13 Optimize the index of refraction of a sheet of glass with a normal map that

focuses the light to produce a lens effect. 64

5.14 Optimize the position of the caustic. 64

5.15 Caustic Gradient . 65

5.16 Gradients with different values of σ . 66

5.17 Object Translation vs REDNER . 67

viii

5.18 REDNER object translation with wider FOV 67

6.1 Example of Gaussian Blurs for Differentiable Visibility 70

6.2 An example from NeRF . 78

ix

List of Abbreviations

AD Automatic Differentiation

BDPT Bidirectional Path Tracing

BRDF Bidirectional Reflectance Distribution Function

BSDF Bidirectional Scattering Distribution Function

BVH Bounding Volume Hierachy

FOV Field of View

FPS Frames per Second

GPU Graphics Processing Unit

MC Monte Carlo

ML Machine Learning

MLP Multi Layer Perceptron

NN Neural Network

PDF Probability Density Function

RGB Red-Green-Blue, the 3 colour channels in a pixel

RMS/RMSE Root Mean Square Error

SGD Stochastic Gradient Descent

SPP Samples per Pixel

x

Chapter 1

Introduction

In the past decade, the field of computer vision has seen significant advancements due

to the proliferation of machine learning (ML) techniques and specialized neural network

architectures [1, 2]. However, many of these modern techniques focus only on the 2D

image and are agnostic to the underlying 3D world and geometry that are behind the

image formation process. When we humans look at an image, our understanding and

experience of the 3D world allow us to infer more general information about the scene in

the image. For example, if we see a bright spot on a glossy surface, we reason that it is

due to a reflection of a light source, rather than a small part of the surface being painted

in such a way that it appears brighter, such as in Figure 1.1.

Inverse graphics is the process of obtaining a detailed description of a 3D scene from

an image. One technique that is useful in inverse graphics is differentiable rendering,

which allows for the computation of gradients through the rendering process [3, 4]. These

gradients can then be used to optimize estimates of scene parameters to closely match a

target image.

Recently, differentiable rendering has been increasingly used in different ML appli-

cations such as generating a 3D representation of an object from a 2D image (mesh recon-

struction) [5] and estimating the orientation and intensity of light sources from an image

1

Figure 1.1: Are the white areas on this blue sphere due to the sphere be-

ing glossy and reflecting the light from a nearby light source, or could

the sphere be painted in such a way that it gives this illusion? How

could you tell? Source: https://image.freepik.com/free-vector/

realistic-blue-sphere-with-shadow_6735-671.jpg

(lighting reconstruction) [6]. The key idea is that incorporating an explicit process of con-

verting 3D geometry into 2D images may allow for machine learning models to better

generalize information from images.

Differentiable rendering involves modifying the rendering process to remove dis-

continuities in the computation of pixel colour, which would otherwise prevent useful

gradients from being calculated. There are two main methods for rendering images, ras-

terization and ray tracing, both of which have been explored for differentiable rendering.

2

https://image.freepik.com/free-vector/realistic-blue-sphere-with-shadow_6735-671.jpg
https://image.freepik.com/free-vector/realistic-blue-sphere-with-shadow_6735-671.jpg

Rasterization uses multiple matrix multiplications to efficiently project the geometry

in the scene onto the plane defined by the camera position, direction and field of view.

This comes at the cost of realism since light paths consisting of multiple bounces are ig-

nored. Several works such as SOFTRAS [5] and DIB-R [6], and NEURAL MESH RENDERER

[7] have implemented rasterization-based differentiable renderers and applied them to

ML applications.

On the other hand, ray tracing produces a detailed, physically accurate image by

simulating light rays propagating through a scene. Images produced using ray tracing

can capture complex lighting effects accurately, at the cost of more computation time.

Some differentiable rendering techniques for ray tracing have appeared in the graphics

literature in recent years [8, 9, 10, 11, 12, 13], but their high computational cost has limited

their use in ML applications.

While the rendering process is easily differentiable with respect to the material prop-

erties at a point on the surface of an object (given a reasonably simple material model),

getting gradients with respect to the scene geometry requires more work. In traditional

rendering algorithms, there are essentially two discrete, non-differentiable steps that need

to be modified to make the rendering differentiable with respect to geometry: Disconti-

nuities at the edges of geometry, and determination of the surface closest to the camera.

Differentiable rendering is attractive in an ML setting as it presents an efficient way

of doing unsupervised image-based ML applications. In these applications, we desire

to train a model to extract some kind of 3D information (such as shape, object position,

or colour) from a target image without having a reference as to what the correct 3D in-

formation is. Normally, this would make training a model very difficult, but by using a

differentiable renderer we can render a 2D image based on the extracted 3D information,

and compare this 2D image to the input image. By comparing the rendered image and

the input image, we can calculate a loss. As the rendering process was differentiable, we

can backpropagate gradients through it to update the parameters of our ML model.

3

Figure 1.2: A comparison of rasterization and ray tracing. With rasterization,

the triangles that form the objects are projected onto the 2D surface that forms

the image. Based on this 2D projection, each pixel is filled in with the appro-

priate shading based on the closest surface. With ray tracing, we cast many

rays from the camera through each pixel and simulate their interactions in

the 3D scene. This leads to a more realistic image, which can be noticed in

the shadows around the plate edges and the reflections in the teapot. Source:

http://mvlsi.kaist.ac.kr/research/multimedia-processor/ray-tracing

1.1 Contributions

We present a manuscript for a novel formulation for differentiable path tracing based on

an extension of the probabilistic view of triangle visibility presented by [5] that model’s

global illumination effects while allowing gradient computation with respect to both ge-

ometry and material properties. We implement this formulation in Python using the

PYTORCH library to allow for simple integration with other common machine learning

libraries and pipelines. We apply our technique to several example inverse rendering

problems involving complex light transport effects such as shadows, indirect lighting, re-

flections, and optimization of object and vertex positions. Additionally, we show results

4

Figure 1.3: The edges of geometry in this image are discontinuities. Moving

from the red wall on the left to the back wall, there is a sudden change in

the value of adjacent pixels, as we cross the edge and go from red to white.

Additionally, there are discontinuities where the box and sphere occlude the

back wall, as the rendering process determines which object appears in front

of the other, discarding information about the surfaces that are occluded.

on optimizing for camera distribution effects such as depth of field and motion blur. To

the best of our knowledge, our method is the first to support such effects.

1.2 Thesis Overview

Chapter 2 describes how images are generated using computers. Chapter 3 reviews dif-

ferentiable rendering and the recent literature in that area. Chapter 4 describes our novel

differentiable rendering method. Chapter 5 shows a variety of examples and compar-

isons that demonstrate the capabilities of our differentiable renderer. Chapter 6 offers an

extended general discussion of our results and differentiable rendering. Finally, Chapter

7 concludes the thesis and addresses possible avenues of future work.

5

Chapter 2

Background

There are two main approaches to project 3D geometry onto 2D images are rasterization

and ray tracing. The original work in this thesis is focused on ray tracing, but rasterization

is briefly summarized here for completeness. Ray tracing is reviewed in more detail, with

the relevant mathematical foundations and equations being presented.

2.1 Rasterization

Rasterization is a method that relies on projecting an image of a 3D scene onto the 2D

viewing image. This projection is done by applying a series of matrix transformations to

the objects in the scene, to rotate, translate, scale, and apply perspective appropriate to the

viewing angle. This series of matrix transformations can become very computationally

expensive when there are a large number of objects and when the meshes describing the

objects are very detailed, with many vertices to handle.

To handle detailed scenes, computers will typically use a graphics processing unit

(GPU), which is a piece of hardware optimized for performing the necessary matrix op-

erations. GPUs are typically able to render complex scenes (e.g. scenes with millions of

6

Figure 2.1: A high-level overview of the programmable rasterization pipeline

that exists on modern GPUs. First, the vertices of the input objects are scaled,

translated and rotated as desired. These transformations are used to modify

the shapes of objects and then determine what point on the 2D image plane the

3D object point projects to. Second, the areas in between the vertices on the 2D

plane are filled in during rasterization. Pieces of triangles that do not lie in the

image plane are discarded in a process known as clipping. We also determine

which triangle on the image plane is the closest to the camera, and therefore

visible, by keeping track of the distance to the closest triangle for each pixel

in a z-buffer. These remaining pieces of the objects are known as fragments.

Finally, the fragments are passed to a fragment shader, which determines their

final appearance, and the image is stored in a frame buffer before being output

to the display. Source: ECSE 546 Course Notes, Derek Nowrouzezahrai

triangles) at interactive rates (i.e 60 Hz). This ability to render images at this rate makes

it very attractive for use in video games and 3D modelling software.

There are significant limitations to rasterization. Rasterization does not consider how

light travels and bounces through a scene, so effects such as reflections and indirect light-

ing do not appear, such as in Figure 1.2. Even accurate shadows are very difficult to

produce with rasterization and are typically only approximated using techniques such as

shadow mapping.

7

These higher-order light transport effects are often critical to achieving realistic-looking

computer-generated images. Fortunately, ray tracing is designed to accurately handle

these situations. Recent advances in GPU hardware have added specialized ray tracing

cores to GPUs (such as in the Nvidia RTX 2060), to supplement the rasterization pipeline

with additional graphical fidelity from hardware-accelerated ray tracing.

2.2 Ray Tracing

Ray tracing the preferred technique for creating high-quality images. This technique can

render photorealistic images with a high degree of accuracy, including effects such as soft

shadows from area or multiple light sources, indirect illumination, reflections, refraction,

and sub-surface scattering. Often, these images can be such high quality that they are

indistinguishable from photographs, such as in Figure 2.2.

(a) (b)

Figure 2.2: One of these is a real photograph, one is rendered. Which is which?1

Ray tracing involves simulating many rays of light, determining how they interact

with the objects in the scene based on objects’ material properties, and calculating how

this appears to the camera based on the camera’s position and properties. A scene is

described by some digital file detailing the shape, position, colour, texture, etc., of the

objects and light sources. A simple example is shown in Figure 2.3

8

In general, ray tracing can be considered as any algorithm that generates rays and

intersects them with the scene geometry for computing physically-based illumination.

In this section, we will focus our discussion on algorithms that use ray tracing to solve

the ”rendering equation” [14] to compute global illumination, relying on Monte Carlo

integration.

There is one major downside to ray tracing. It can take significant time to create

detailed, high-quality images. The time taken can span from a few seconds to several

minutes or hours, for a single image or frame of video. While a few seconds might not

seem like much, this is much too slow for use in video games or other interactive media.

It takes at least 24 frames per second (FPS) for video motion to seem smooth to the human

eye. This means we have at most 40ms to render an image to produce smooth video. In

practice, we usually want 30 or even 60 FPS to ensure the movement appears convincingly

smooth and responsive to inputs in the case of video games. This further reduces our max

computation time for a frame to 32ms or 16ms or even less.

The long rendering time for ray tracing is due to the computational complexity of

simulating millions of light rays travelling and bouncing through a 3D scene. As such,

this technique has been restricted to applications where images and videos can be ren-

dered ahead of time, then simply played back. As such, it is commonly used for computer-

generated images (CGI) in TV and film, as well as pre-rendered cut-scenes in video games.

2.2.1 The Rendering Equation

Most often when rendering scenes, we are interested in computing the global illumination

at the points we can see from our viewing position. Global illumination refers to the il-

lumination due to both the light coming directly from light sources (direct illumination)

and the indirect light due to reflections off of other objects in the scene (indirect illumina-

1 (a)isreal;(b)isrendered.

Images source: https://www.azuremagazine.com/article/spot-the-fake-real-or-rendering/

9

Figure 2.3: Starting from the eye, we generate rays that pass through the

pixel grid and simulate their interactions with the 3D scene, allowing them

to bounce around until they connect to a light source. Simulating many of

these light paths and averaging their contributions allow us to generate a de-

tailed, photorealistic image. As there are an infinite number of possible ways

to connect the eye and the light sources, we must simulate a large number of

paths and use numerical methods to ensure our estimates converge.

tion). An example of the contributions of direct and indirect lighting can be seen in Figure

2.4.

A compact equation that describes the global illumination at any point in the scene is

given by the Rendering Equation [14]. After being proposed by Jim Kajiya in 1986, most

research into photorealistic rendering has focused on solving this equation as quickly and

as accurately as possible.

The equation is shown here in Equation 2.1

Lo (x, ωo) = Le (x, ωo) +

∫
H2

fr (x, ωi, ωo)Li (x, ωi) cos θidωi (2.1)

10

(a) (b)

Figure 2.4: (a) Direct illumination in simple scene. Note the lack of illumina-

tion on the ceiling and the left side of the rectangular prism. These areas do not

directly view the light, and as a result, appear black. (b) Global illumination in

a simple scene. Global illumination is the sum of the direct and indirect illu-

mination components. Indirect illumination was capped at four light bounces.

This equation shows that the radiance Lo (Units: W · sr−1 ·m−2) leaving the point x

in direction ωo is equal to the sum of the radiance emitted by the point Le and an integral

term that represents the reflected radiance, often abbreviated as Lr.

The emitted radiance Le is dependent on the point of interest x and the outgoing

direction ωo. This term is only non-zero if the point x is on the surface of a light source,

typically called an emitter in rendering. Some light sources can emit more strongly in

certain directions than other directions, giving this term a directional dependence.

The integral computes the total amount of light reflected at the point x in the outgo-

ing direction ωo, often shortened to Lr. This integral has three terms in it.

This first term fr is the Bidirectional Reflectance Distribution Function (BRDF). It is

sometimes more generally called a Bidirectional Scattering Distribution Function (BSDF).

This term is the ratio of how much incoming light from direction ωi gets reflected in the

outgoing direction ωo at x.

11

The second term Li is the radiance incoming to x from direction ωi. The incident

radiance could be originating directly from a light source in the scene, or it could corre-

spond to light that has reflected off another surface to arrive at this point. This incoming

radiance will be scattered (and possibly absorbed) by the material the forms the surface x

lies on.

The third term, cosωi is called the cosine foreshortening term. This term represents

how the incoming energy gets spread out (in a differential sense) for a ray whose direction

has an angle of θi with respect to the normal at the point x. For a ray that is coming

straight at a point, i.e. from an angle of 0, the energy is not spread out at all, and this term

evaluates to 1. But as the ray comes from an increasingly grazing angle, the contribution

of radiance to the point is reduced, eventually becoming 0 when the ray forms a right

angle with the normal.

We integrate these three terms over the hemisphere, denoted by the shorthand
∫
H2 .

This integration effectively adds up the contribution of incoming lighting from every pos-

sible direction visible from the x.

Physically based BRDFs

For a material to be physically based (i.e. obey the laws of physics, as we currently un-

derstand them), the BRDF must obey two constraints: Helmholz reciprocity and conser-

vation of energy.

Helmholz Reciprocity states that the function should be symmetrical with respect to

the going and outgoing directions. Mathematically, this is given in Equation 2.2.

fr (x, ωi, ωo) = fr (x, ωo, ωi) (2.2)

12

Figure 2.5: A diagram showing the relationship between the point x, and the

directions ωi and ωo. By convention, both ωi and ωo are unit vectors that point

away from the shading point x. The angle θ is the angle between the surface

normal and ωi.

Conservation of energy ensures that it it not possible for a point to reflect more energy

than is incoming to it. This is given in Eq. 2.3. We allow for a point to absorb energy,

which can result in the point reflecting less energy than is incident to it:

∫
H2

fr (x, ωi, ωo) dωi ≤ 1,∀ωo (2.3)

.

2.2.2 Solving the Rendering Equation

In practical implementations, global illumination must be calculated for each of the three

colour channels (RGB). The red, green and blue components of the BRDF at any point

13

will depend upon the colour of the surface the point lies on. The incident radiance at

point x from direction ωi is equivalent to the outgoing radiance from another point in the

scene. This point will lie at the intersection point of the ray originating at x in direction

ωi and the first surface it intersects with in the scene. Using this, we can reformulate the

rendering equation into the following form:

Lo (x, ωo) = Le (x, ωo) +

∫
H2

fr (x, ωi, ωo)Lo (r (x, ωi) ,−ωi) cos θidωi (2.4)

r(x, ωi) is the ray tracing function which returns the point of intersection between

the ray traced in direction ωi from point x and the first surface that this ray intersects. A

diagram demonstrating this reparameterization can be seen in Figure 4.

Figure 2.6: Reparameterization of incident light at point x in terms of outgoing

radiance at another point found using the ray tracing function.

We can see that this equation now takes an interesting form. The dependence on

the incident radiance Li(x, ωi) has disappeared and the outgoing radiance Lo(x, ωo) now

appears on both sides, where it appears inside the integral on the right-hand side. This

makes the function recursive. This type of equation is known as a Fredholm equation of

the second kind.

14

Solving the rendering equation is the primary challenge in rendering realistic scenes.

Several algorithms exist that try to solve the rendering equation efficiently. This work fo-

cuses on the path tracing algorithm. This algorithm relies on Monte Carlo (MC) methods

to numerically approximate the integral term.

2.3 Monte Carlo Integration

Monte Carlo (MC) integration is a numerical method for calculating a definite integral

using random numbers. The name for the technique is a reference to the city of the same

name in Monaco, which is famous for its random number generators, more commonly

called casinos.

While MC integration was initially used to simulate particle interactions in nuclear

physics [15], it is now frequently used in computer graphics to evaluate integrals, such as

the rendering equation. A brief review of the fundamentals of Monte Carlo integration is

provided here.

Given some function f(x) and a random variable X with probability distribution

p(x), and p(xi) > 0,∀f(xi) 6= 0 for all xi ∼ X the following holds:

∫
Ω

f(x)du =

∫
Ω

f(x)

p(x)
p(x)du = E

[
f(X)

p(X)

]
(2.5)

The expectation can be approximated using a finite number of samples N drawn from

p(x) using the following MC estimator:

∫
Ω

f(x)du ≈ 1

N

N∑
i=1

f (xi)

p (xi)
(2.6)

15

Essentially, the integral is approximated as the average of the integrand f(x) weighted

by p(x) for N samples drawn according to the probability distribution p(x). In the limit

where N −→∞, a strict equality holds.

MC integration is an attractive technique because the method requires only three

conditions to compute unbiased estimates for an integral:

1. a probability distribution function p(x) that is non-zero everywhere f(x) is non-zero,

2. the ability to draw random samples according to p(x), and

3. the ability to evaluate the integrand f(x) at x

Monte Carlo integration provides an unbiased estimator for an integral. This means

that there is no offset between the mean of our estimator and the integral we are trying

to evaluate. The Monte Carlo method is easily extendable to higher dimensions; our

scalar x simply becomes a vector x̄. Monte Carlo integration is very useful in evaluating

higher-dimensional integrals because it does not become significantly more complex with

additional dimensions.

Monte Carlo integration has two main drawbacks. The first issue is that there is

”noise” in our image. This noise manifests in the image as grainy, uneven shading of

areas that should appear uniform. This noise is caused by the variance due to the random

sampling. Our MC estimator only converges perfectly if we do an infinite number of

samples. For any finite number of samples, the variance will cause the estimate to differ

from the expected value by some amount. As we do more samples, the variance of the

estimator and the visual impact of the noise in the image decrease. This leads us directly

to the second issue with MC integration: slow convergence rate.

MC integrals converge at a rate ofO(1√
N
). This means that if we want to improve the

quality of the image by a factor of 2, we need to take 4 times as many samples, and if we

want to improve by a factor of 10, we need to take 100 times as many samples.

16

2.3.1 Monte Carlo Integration in Rendering

In the rendering equation, it is possible to satisfy all three conditions necessary for Monte

Carlo. Our MC estimator for the integral in Equation 2.1 will be:

∫
H2

fr(x, ωi, ωo)Li(x, ωi) cos θidωi ≈
1

N

N∑
j=1

fr(x, ω
j
i , ωo)Li(x, ω

j
i) cos θ

j
i

p(ωj
i)

(2.7)

Unfortunately, attempting to solve this estimator completely for a significant number

of samples, while allowing for several bounces of indirect light at each point, is not practi-

cal. The recursion in the rendering equation results in an exponential growth of the paths

needed to trace to compute the radiance at a point, which would require an impractical

amount of computer memory and compute time.

This limitation leads us directly to the Path Tracing algorithm. Instead of taking

N samples at a point, we will instead take a single sample and repeat this for however

many bounces of indirect light we would like our light transport simulation to take into

account. If a sufficient number of paths for each pixel in the image are traced and have

their contributions averaged, the result will converge to the correct image.

We can actually do even better than this. If the path length is fixed to maximum

depth, bias will be introduced into the estimation, as some amount of the light travel-

ling around in the scene will be discarded. In practice, this bias is very small if a suf-

ficiently high number of bounces is chosen, and will an imperceptible effect on the fi-

nal image. This bias can be removed entirely by employing a technique called Russian

roulette which stochastically determines when to terminate the path with some probabil-

ity p, and reweights radiance contributions of path segments according to p. This results

in a completely unbiased image.

In our renderer, we focus mainly on forward path tracing with explicit connections

to light sources. This means that we start tracing rays from the camera. This is referred to

as forward since this is how ray traced images are usually formed.

17

Having the rays originate from the camera has several advantages, mainly we ensure

that all light paths we simulate will be visible to the camera, and we can create paths in

such a way that ensures that all pixels in our image will have some number of samples

taken.

Explicit connections to light sources (sometimes called next event estimation) is a tech-

nique to reduce the variance and improve the convergence rate of the image. Each time

we get to a new point along the light path, before randomly choosing a new direction to

continue the path in, we make a direct connection to a light source, by sampling a random

point on its surface, as illustrated in Figure 2.7. We can do this because we have access to

all the information about all the light sources in the scene, including their shape and po-

sition. By including an additional direct connection to a light source, we no longer have

to rely on randomly hitting a light source with our trace ray (which is known as implicit

path tracing).

We have to include an additional term when evaluating the integrand for this con-

nection to ensure that our probabilities are correct. This is because we sampled a point

over the area of the light source, rather than a random direction, so we need to include

a Jacobian factor that corrects for the change in measure between directions and areas.

This factor is often called the geometry term and is denoted by G(x ↔ y). This factor is

proportional to the inverse square of the distance between the points, and the cosines of

the connection direction and normals of the surfaces, as shown in Figure 2.8.

G(x↔ y) =
cos(θx) cos(θy)

||x− y||2
(2.8)

18

Figure 2.7: We can make our light transport simulation converge more quickly

by using next event estimation. When we intersect a diffuse surface, we can

sample a point on a light source in the scene and check if it’s visible from the

intersection point (red arrows). We can compute the contribution from this

path before sampling a direction to continue bouncing (blue arrows). This

breaks the integral computation into two parts, one for direct lighting and the

other for indirect lighting. We must ensure that our samples intended for es-

timating indirect lighting do not intersect emitters, otherwise, we would dou-

ble count direct lighting contributions. Source: ECSE 546 Course Notes, Derek

Nowrouzezahrai

2.4 Caustics and Light Tracing

When light passes from one medium to another medium with a different index of refrac-

tion, it undergoes a phenomenon known as refraction. Refraction causes the path of the

19

Figure 2.8: The relationships between the terms used in the computation of

the geometry term G(x ↔ y) when using next event estimation. Usually, a

separate check is done to ensure that the normal of the intersection point and

the normal of the sampled point on the emitter are aligned correctly.

light to bend proportionally to the ratio of the indices of refraction of the two materials.

The exact change in direction can be calculated using Snell’s Law [16].

When travelling from one material into a different material with a higher index of

refraction (such as from air into glass), the bending of light paths causes the energy of

the incoming light paths to be focused into a smaller range of angles [17]. Visually, this

manifests as a patch of brightness, typically referred to as a caustic.

When ray tracing, producing an image with caustics takes special care. The interac-

tions at the boundaries between materials are specular, which means that for an incoming

light path, there is a unique outgoing direction. This means that when ray tracing with

ray originating from the camera, we cannot explicitly form connections to a light source

from a point on the material boundary. This explicit connection assumes that there is a

diffuse scattering interaction occurring at the point, which is not the case in this situation.

20

Figure 2.9: A caustic cast from a glass of water with sunlight incident from

the right side of the image. The light passing through the water and glass is

refracted and focused, resulting in the areas of brightness. Source: Heiner

Otterstedt, https://commons.wikimedia.org/w/index.php?curid=5900818

One possible solution is to fall back on implicit path tracing, relying on random

chance to find the light paths that connect to a light source and result in caustics. In prac-

tice, this method is terribly inefficient, taking a long time to converge, and only works for

light sources with finite area. Generating a caustic from a point light would be mathemat-

ically impossible using our random sampling techniques, as we would have to randomly

hit an infinitely small point in space, which has probability 0. A more efficient method

is to invert our typical method for ray tracing and to trace rays beginning from the light

sources. This technique is typically called light tracing.

Practically, this technique ends up being very similar to the forward path tracing dis-

cussed previously. We sample a point and direction from the light sources in our scenes,

ray trace and resolve the intersections, then we can form an explicit connection to our

camera when we encounter a diffuse surface. This will allow us to efficiently find paths

that result in caustics.

21

Light tracing also has its limitations. When a point/pinhole camera with light trac-

ing, it is actually impossible (i.e. it has a probability of 0) to find paths that have a specular

interaction that connects to the camera through random sampling. The reason for this is

identical to how we cannot find caustics for point light sources with path tracing. This

means that when we try to render a mirror or a piece of glass with light tracing, they will

appear completely black.

Ideally, we would combine the strengths of both path tracing and light tracing to

overcome the limitations of each individual one. Fortunately, this is exactly what the

technique of bidirectional path tracing (BDPT) does [18]. Unfortunately, even with BDPT,

there are still some light paths that are difficult to form, specifically ones that have a

diffuse interaction in between two specular interactions. These are sometimes referred

to as SDS (specular-diffuse-specular) paths. For these, methods such as photon mapping

exist [19] [20].

2.5 Camera Effects

When rendering an image, everything describing the is done digitally; the shape and

colour of the objects, the lighting, as well as the camera used to ”take” the picture. Real

cameras have various physical constraints and properties that affect how they form an

image. When describing a scene, we have to decide if and how we want to replicate these

effects.

The most common camera model used in rendering is the pinhole camera. This is an

idealized, non-physical version of a camera that captures the light within a given field of

view incoming to a single point in space instantly. Two reasons that this camera model

is non-physical because real cameras have lenses with a finite area and focal length, and

the camera also requires a certain amount of exposure time to capture light to form the

image.

22

If we want the images we produce to more closely resemble those that might be taken

with a real camera, we can simulate a lens with finite area and focal length, and a non-

instantaneous exposure time.

In real cameras, depth of field is caused by a lens’s inability to focus light perfectly

from all points regardless of their distance to the camera. Simulating a lens with an area

and focal length will create a depth a depth of field effect: there will be a plane of focus in the

image perpendicular to our viewing direction, objects close to this plane will appear sharp

and in focus, objects far from the focal plane will be blurred and out of focus. This effect is

simulated by generating rays at the origin of the camera, determining where they would

intersect the focal plane, then perturbing the origin of the ray by randomly sampling in

a small area around the origin (usually in a disc perpendicular to the viewing direction)

while ensuring that the ray will still pass through the same point on the focal plane. By

tracing many rays from many different points on the simulated lens and averaging out

their contributions, we can produce an image with a realistic depth of field effect.

Physical cameras require the aperture to open for a period of time to capture enough

light to take a picture. This is called exposure time. When there are fast-moving objects in

the scene we are trying to capture, this combined with the finite exposure time, leads to

the moving objects having a streaked, blurred appearance, which is commonly referred to

as motion blur, such as in Figure 2.12. This effect can be simulated by sampling a moment

during the exposure time, and rendering the objects with their geometry updated to be

in the appropriate place based on their starting position, velocity and the time elapsed.

After sampling many points in time and rendering the associated image, we can average

these images to produce a final image that has the moving objects appropriately blurred.

Both depth of field and motion blur are effects that effectively require the scene to

be rendered multiple times, and the resulting images to be averaged together, which can

dramatically increase the amount of time needed to render the desired image. Neverthe-

less, the resulting effects can be very effective at achieving a particular visual style, and

are popular in animated feature films, as seen in Figure 2.13.

23

Figure 2.10: The interactions at the surface of the glass sphere in this image are

perfectly specular. For an incoming ray, there is a delta BRDF at the surface,

which directs the outgoing ray along a unique path. Perfectly specular surfaces

like this do not have a diffuse term, which means that we cannot use next event

estimation to reduce variance. We can still use implicit path tracing and hope

to randomly hit the light source, but this is inefficient if the light source is small.

Many rays will miss, leading to a slower rate of convergence. Source: ECSE 546

Course Notes, Derek Nowrouzezahrai

24

Figure 2.11: An example of depth of field. The focal plane/point in

this image lies near the center of the image. The words close to the

focal plane are sharp and in focus, while words behind and in front

of the plane being out of focus and blurred. Source: CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=330435

25

Figure 2.12: An example of motion blur showing a moving bus and

a stationary telephone booth. The high speed of the bus with re-

spect to the shutter speed/exposure time of the camera used results

in the bus being blurred into a streak in the direction of motion.

Source: By E01 - originally posted to Flickr as London bus, CC BY-SA 2.0,

https://commons.wikimedia.org/w/index.php?curid=4575184

26

Figure 2.13: An example of simulated camera effects in Toy Story 4. Depth

of field is used to direct the audience’s attention to Woody and Bo Peep

by having them appear in focus, while the Ferris wheel far in the back-

ground is out of focus. The lights on the Ferris wheel also exhibit another

effect called Bokeh. Source: Toy Story 4, https://cdn.fstoppers.com/styles/large-16-

9/s3/lead/2019/10/4bf2c77c126d0069cc9d9b9dbda465fc.jpg

27

https://en.wikipedia.org/wiki/Bokeh

Chapter 3

Differentiable Rendering

Now that we have built up sufficient background on forward rendering, we will examine

the challenges that arise when we want to make the rendering process differentiable.

Some parameters of the scene are differentiable without any modifications necessary.

Given a differentiable BRDF, the image will be differentiable with respect to the mate-

rial parameters. Diffuse and Phong are common BRDFs that are naturally differentiable.

Similarly, textures are also easily differentiable.

Difficulties arise when we consider the geometry; the placement and the shapes of

the objects in the scene. In both rasterization and ray tracing, when considering an image,

discontinuities are introduced in two cases: 1. at the edges of objects and 2. where two or

more objects overlap and the one closest to the camera must be determined. These two

problems are often referred to together as the differentiable visibility problem.

3.1 Discontinuities and Differentiability

The first source of discontinues we must consider is the edges of objects. We refer to

these as edge discontinuities. Consider an image of a red square on a dark background,

28

as3.1 we cross from the black background onto the red triangle, there is an instantaneous

colour change. This jump is a discontinuity that is non-differentiable. Furthermore, on

either side of the jump, the shading is completely uniform. There is no indication at the

individual pixel level that we are close to an edge. These areas have a gradient of zero,

which is not useful if we want to optimize the position of the red square.

(a) (b)

Figure 3.1: The change in colour as we travel along the white arrow in (a) is

described by (b). The slope of the graph of in (b) is the gradient as we travel

along the white arrow. Since the shading in both the background and the red

square is uniform, the gradient is 0 everywhere, except at the edge where there

is a non-differentiable discontinuity.

The second source of discontinuities is when objects in the scene overlap from the

viewing position. In normal rendering, the object closer to the camera will occlude the one

behind it. The occluded object will not be visible in the resulting image, and all gradients

related to the occluded object will be zero. We refer to these as occlusion discontinuities.

Additionally, we also can have the case where two objects only partially overlap from the

viewing position, resulting again in a non-differentiable discontinuity as we cross from

viewing one object to viewing the other.

To solve these problems, two modifications have to be introduced. Additional infor-

mation about the edges of objects and their gradients needs to be computed explicitly or

encoded into the rendered image differentiably, and occluded objects in the scene need to

29

(a) (b) (c)

Figure 3.2: (a) a scene where geometry occludes other geometry. (b) The blue

triangle partially covers the red square, occluding the area represented by the

purple region. As we move along the white arrow, there is a non-differentiable

instantaneous jump when we transition from one shape to the other, similar

to the one described by 3.1b. Additionally, the orange square represents a yel-

low square that is completely occluded by the red square. This yellow square

would normally have no contribution to the image, and we could not compute

any gradients related to it. (c) represents the scene as viewed from the side.

have some contribution to the rendered image or have their gradients taken into account

otherwise.

3.2 Related Work

In this section, we discuss some of the most influential and recent works in differentiable

rendering. Several different methods for differentiable rendering have appeared in recent

years, for both rasterization and ray tracing. Some methods handle both the edge and oc-

clusion discontinuities described above, while others focus only on edge discontinuities.

30

3.2.1 Rasterizers

For rasterization-based methods, several different formulations have appeared in the lit-

erature recently [5, 6]. Rasterization differentiable rendering methods typically have a

focus on applying their systems to interesting ML applications such as mesh reconstruc-

tion, lighting model estimation, or texture reconstruction.

OpenDR

One of the earliest differentiable rasterizers published was OpenDR [4]. It computed

approximations to the gradients using Taylor expansions. However, these gradients are

non-zero in only a small region around the edges of the geometry.

Soft Rasterizer

In Soft Rasterizer [5] (SoftRas), each triangle is viewed as a probability distribution, which

decays smoothly from the center of the triangle after it has been projected onto the image.

This has the effect of making all triangles have some contribution to each pixel on the

image place, with the amount of contribution to distant triangles being modulated by the

rate of fall off of the distribution, which can be controlled using a parameter. The depth

ordering of the triangles for a given pixel is a Softmax-like weighted sum based on the

projection distance from the geometry to the image plane (z-buffer).

Differentiable Interpolation Based Renderer (DIB-R)

DIB-R [6] focuses on interpolating vertex information from vertices of the closest triangle

to the image plane for each pixel. This vertex-based approach has some nice advantages

as one of the core elements for rasterization is the vertex, which can carry information

regarding the position, colour and even texture of the surface it resides on.

31

Figure 3.3: The Soft Rasterizer [5] R (top) can render a mesh silhouette that

closely resembles the one generated by a standard rasterizer R′ (bottom). The

standard rasterizer renders a pixel as solid if it is covered by a projected tri-

angle. This is a discrete and non-differentiable step. By approximating the

rasterized triangles {D′i} with a “soft” continuous representation {Di} based

on signed distance field and combining {Di} using a differentiable aggregate

function A(·) the process becomes differentiable. Source: Liu et al. [5]

However, differentiable renderers based on rasterization have several limitations.

They are only able to handle effects related to primary visibility. They do not take into

account effects such as shadows, reflections, and indirect light. Additionally, most of the

recent rasterization-based differentiable renderers are only able to handle single objects.

To handle more complex light transport effects and multiple objects, there exists a

different class of differentiable renders based on ray tracing techniques.

32

Figure 3.4: Chen et al. [6] use their differentiable renderer to train an ML sys-

tem to predict geometry, texture and lighting given an input image. During

training, the predicted parameters are rendered with a known camera. The 2D

image loss between the input image and rendered prediction is used to train

the prediction network. prediction networks. Source: Chen et al. [6]

3.2.2 Ray Tracers

These types of differentiable renderers can be more broadly classified under the umbrella

of differentiable physics, as they are concerned with differentiating the physically-based

transport of light in a scene. A few differentiable Monte Carlo ray tracing techniques have

been presented.

Differentiable ray tracing allows for global illumination (i.e. inclusion of indirect

lighting) and other effects such as refraction, specular reflections and shadows. Detailed,

photorealistic images with these effects can be produced, we are still able to backpropa-

gate gradients through these effects, allowing for applications based on these effects to be

explored.

33

Redner

In 2018, Li et al. [8] published a general-purpose differentiable ray tracing method with

no approximations in the gradients. Li et al. released code alongside their publication,

in a system they called REDNER (render backwards). This system introduces a technique

they call edge sampling to compute gradients of the integration terms. Essentially, they

construct the problem so that rather than having to directly compute the gradients of the

Monte Carlo integrals, which would be quite challenging, they use the fact that integrals

and gradients commute under suitable conditions. Recognizing this property, they com-

pute the integral of the gradient, which can be achieved through another MC integration

and by careful construction of the integrand.

This method requires additional sampling to determine the location of the edges for

both primary visibility and secondary visibility. For primary visibility, the edges can be

found relatively easily by recomputing the silhouettes of objects from the camera’s view-

ing position. For secondary visibility (i.e. light paths that contain bounces), it requires the

use of complex data structures to keep track of the edges visible from the perspective of

the shading point.

Figure 3.5: The edge sampling method computes gradients from the output

image for various scene parameters, such as camera pose (c), material param-

eters (d), and lighting parameters (e). The gradients are used in an inverse

rendering task to fit an initial approximation of a scene (a) to match a real pho-

tograph (b), with the result appearing in (f). Source: Li et al. [8]

34

Path Space Differentiable Rendering

This method [12] established a formulation of differential rendering that allows for bidi-

rectional path tracing. Previous methods were only capable of handling unidirectional

path tracing. In theory, using bidirectional methods would allow for more complex light

transport scenarios. The gradients computed using this method are unbiased and avoid

the costly silhouette samplings that Redner uses.

Figure 3.6: The Veach Egg relies heavily on bidirectional path tracing to pro-

duce a convincing image efficiently. The gradients for the original image com-

puted with Finite Differences (FD), the bidirectional and unidirectional meth-

ods from Zhang et al. [12], Redner [8], and Mitsuba 2 [10] are shown. Source:

Zhang et al. [12]

Mitsuba 2

Mitsuba 2 [9] [10] uses a reparametrization of the Monte Carlo integral for the rendering

equation. This reparametrization causes sampling discontinuities to move with the edges

of geometry, which makes shifts in geometry result in continuous changes in the image

and admits the computation of meaningful gradients. However, the gradients computed

using this method are biased.

This method used here does not focus on finding and sampling the boundaries of

objects explicitly. Instead, it casts additional rays to sample the area inside the silhouette

of an object and uses heuristics to determine where the edges of the silhouette lie. While

these heuristics work well in general, they are some situations where they fail. This leads

to approximations and inaccuracies in the gradients calculated, which causes bias. How-

35

ever, this method is faster than those that rely on explicit edge finding, and the gradients

are sufficiently accurate to be useful in typical situations.

(a) Integrand with dis-

continuity

(b) Edge sampling from

Li et al. [8]

(c) Change of variables

from Loubet et al. [10]

Figure 3.7: (a) Integrands in physically-based rendering have discontinuities

whose location depends on scene parameters such as object positions. (b) In

Redner [8], gradients are estimated by sampling pairs of paths along the sil-

houette edges of geometry (red dots) in addition to standard Monte Carlo sam-

ples (blue dots) for determining appearance. (c) In Mitsuba 2, the expensive

sampling of visible silhouette edges from Redner is avoided by using a change

of variables that ensures the discontinuities are fixed with respect to the Monte

Carlo samples for infinitesimal changes of scene parameters. These MC esti-

mates can be differentiated using automatic differentiation. Source: Loubet et al.

[10]

Radiative Backpropagtion

Another ray tracing based technique called Radiative Backpropagtion has also been re-

cently published [11]. This technique offers a significant speed improvement compared

to the reparameterization technique. This technique considers the entire scene as a single

transport function and computes an estimate for this function. They then use an adjoint

method to compute gradients. This approach allows them to avoid having to keep a com-

putation graph of all operations done to construct the image, saving a substantial amount

36

of memory and time as they don’t have to do a backward pass through the graph. How-

ever, currently, this technique has some significant limitations. Primarily, it does nothing

about the differentiable visibility problem, and therefore it does not allow for changes of

objects’ positions or vertices.

Figure 3.8: The radiative backpropagation method reconstructs the texture of

a globe seen through a glass jar. The globe is initialized with a Mars texture,

and the system attempts to match the target image by differentiating scene pa-

rameters using the L2 distance to the target. The plot shows the convergence

over time comparison with Mitsuba 2 and the different variants of radiative

backpropagation introduced. The radiative backpropagation method demon-

strates speedups of up to ∼ 1000× over Mitsuba 2. Source: Nimier-David et al.

[11]

Unbiased Warped-Area Sampling for Differentiable Rendering

This method proposed by Bangaru et al. [21] uses the divergence theorem to formulate

an expression for the derivative at the boundary of a shape based on samples taken over

the area interior of an object. Deriving the area integral from first principles, they can

formulate consistent and unbiased estimators for the gradients.

37

This method still requires the tracing of auxiliary rays. This method is similar to the

method of Loubet et al. [10], which also relies on samples based on the interior of the

object but improves upon it by producing unbiased gradients. They also show that the

Loubet et al. method is a special case of their method.

Figure 3.9: In this scene, a leafy wall is reflected in a glossy black surface.

Bangaru et al. [21] develop an unbiased estimator that computes the boundary

contribution to gradients from area samples, to produce accurate, low variance

gradients. Compared to the edge sampling method [Li et al. 2018] which needs

to explicitly sample boundary points (difficult in the glossy reflection area), the

warped area sampling method can use samples from a standard path tracer.

We can see in this scene the Bangaru et al. [21] (labeled ‘Our Method‘ above)

computes gradients much more than the edge sampling method. Source: Ban-

garu et al. [21]

3.3 Automatic Differentiation

One technology, in particular, has helped enable the recent progress in differentiable ren-

dering: automatic differentiation. Automatic differentiation, also called auto diff or AD,

is a feature that allows a user to numerically evaluate the derivative of a function specified

by a program.

38

Figure 3.10: A family tree of differentiable renderers. Both of the boundary

sampling techniques require an importance sampling data structure. The Red-

ner technique from Li et al. [8] uses a 6D Hough tree to track silhouettes and

Zhang et al. [12] pre-compute a spatio-angular photon map. The reparameter-

ization method from Loubet et al. [10] does not need a data structure. It com-

putes rotations as needed during the standard Monte Carlo rendering process.

However, this method is biased. The Warped Area Sampling from Bangaru

et al. [21] has the simplicity and flexibility similar to the reparameterization

method while being unbiased. Source: Bangaru et al. [21]

After writing a function using a library that supports automatic differentiation, the

program can automatically calculate the gradient of this function with respect to specified

parameters. Typically, the library keeps track of all the operations done on the input to

compute the output, storing the derivatives at each step in a tree or graph structure. These

individual derivatives can then be used in combination with the chain to calculate the full

gradients between the input and outputs.

39

Auto diff is a practical and efficient alternative to calculating by hand analytic gra-

dients for whatever arbitrary function a user might want to implement. In the context of

differentiable rendering, rendering a scene can be thought of as a function. This function

is complex and it would be impractically difficult to calculate gradients by hand for the

majority of the interesting inputs (such as geometry), making automatic differentiation a

critical component of a differentiable renderer.‘

Some examples of popular libraries that offer automatic differentiation are PYTORCH

[22, 23] and ENOKI [24].

Automatic differentiation has found its principal use in machine learning applica-

tions, where gradients are used in optimization algorithms such as ADAM [25] for updat-

ing the weights of the model to improve its accuracy.

This technology also sparked interest in other has applications in other areas, such

as differentiable physics. Differentiable rendering can be considered a special case of

differentiable physics, that is focused on physically-based light transport.

3.4 Applications

A direct application of differentiable rendering is in inverse rendering. In general, inverse

rendering is inferring detailed scene parameters from an image, similar to computer vi-

sion, the main difference being is that there is a rendering system somewhere in the loop.

For example, given an approximate scene description and a target image, the difference

between the target image and the rendered image of the approximation can be computed.

From this difference, gradients with respect to the shape or position of objects can be com-

puted, and we can use gradient descent methods to minimize the difference, and update

the approximation to more closely match the target image.

Differentiable rendering has also been integrated into various machine learning pipelines.

Differentiable rendering is attractive in ML contexts because of its ability to pass gradi-

40

ents through the rendering process. The computation of gradients is central to training

models.

One example unsupervised mesh reconstruction. In these applications, the goal is to

train a model to output a mesh (or another 3D representation) from one or several photos

of an object, such as a chair, without any references for what the 3D output should be. The

training loop in these applications leverages a differentiable renderer to render the image

of the output mesh, and compare this image to the original input image. Ideally, we want

them to match, however, initially, the model will be bad at predicting the 3D represen-

tation. We can calculate loss between the output image and the target/input image, and

back-propagate the gradients from this loss through the differentiable renderer to update

the parameters of the model.

Figure 3.11: An example of how a differentiable renderer can be used in the

training loop for an ML model. We are training the ML system to extract 3D

information (ex. a mesh, object orientation, light position) from an image. By

including a differentiable renderer in the loop, we can render an image based

on the 3D information we extract and compare it to the reference image, cal-

culate a loss, and update the parameters of the model. The advantage of this

unsupervised method is that it does not require the reference 3D information

associated with the image. If we were to use a non-differentiable renderer,

it would not be possible to backpropagate meaningful gradients through the

rendering process.

41

Another example is adversarial image generation for testing the robustness of com-

puter vision or classification systems. Here, we can start with an image of a chair, which

will be correctly classified by the model. By calculating gradients, we can determine how

to modify the image we send to the model, to trick it into misclassifying the chair as

another object. Often, small, nearly imperceptible changes can cause difficulty for these

classification models, causing them to classify objects that humans can easily recognize,

as something absurd [26, 27], such as in Figure 3.12.

Figure 3.12: The left image of the school bus is correctly classified by AlexNet,

a computer vision model based on deep neural networks. Adding the middle

image to the left image causes the right image to be classified as an ostrich.

This example is taken from [26]

42

Chapter 4

Methodology

In this section, we discuss the novel algorithm for differentiable rendering that forms the

body of this thesis.

This work was mainly inspired by the approach taken in SOFTRAS [5], but we extend

their idea of considering triangles as a probability distribution, to work in a path tracer.

This allows us to handle multiple bounces and other more complex light transport effects

that are typically unachievable with rasterization.

We also explore how differentiable rendering could be used in inverse rendering

problems involving some camera effects, namely motion blur and depth of field.

An advantage to our approach compared to other global illumination differentiable

renderers (such as REDNER [8] and MITSUBA 2 [9]) is that it does not require casting

additional rays or taking additional samples to calculate gradients.

43

4.1 Edge Discontinuity

In our system, we view triangles as a probability distribution in 3D space, rather than

just in the image plane as proposed in SOFTRAS. With this approach, a ray can intersect

with a triangle in the entire plane of the triangle. By considering the triangles as distri-

butions, the edges of the triangles are blurred or smoothed out from being sharp, non-

differentiable discontinues, to being smooth continuous functions. A simple example of

how this appears visually is given in Figure 4.1. This blurring effectively regularizes the

discrete step that would be present at the edges of geometry in the scene and admits the

computation of useful gradients. This smoothed function can be handled by automatic

differentiation techniques.

(a) (b)

Figure 4.1: The change in colour as we travel along the white arrow in 4.1a is

described by 4.1b

This blurring function, which we will denote as α, effectively modulates the trans-

parency of the triangle.

Given a point in 3D space x, the value of α is given by Equation 4.1:

α(x, σ) = sigmoid
(

sign(d(x))
d(x)2

σ

)
, (4.1)

44

where the point x lies in the plane of triangle we are computing the transparency for.

d(x) is the signed distance (positive inside the triangle) to the nearest edge of the triangle

(in the plane of the triangle), and σ is a value used to control the edges’ sharpness. The

sigmoid(z) function is given by Equation 4.2.

sigmoid(z) =
1

1 + exp(−z)
(4.2)

Decreasing the value of σ decreases the amount of blur in the image, making the

image edges in the image sharper. In the limit, where σ → 0, we recover the discrete step

we have in traditional rendering. In practice, setting σ to a small value (on the order of

1e−7) results in an image that does not have any perceivable blur.

This results in the triangle having the highest opacity in its interior, having α(x) = .5

at an edge, and decaying asymptotically to 0 as the distance to the edges goes to infinity.

α(x) is a smooth and differentiable function of the vertex positions of the triangle that

directly contribute to the value of the pixels, which is necessary for the computation of

gradients with respect to the vertex positions.

As a result of this formulation, a ray will produce a valid intersection with a triangle

anywhere it intersects the plane the triangle lies in. If we intersect the plane far outside

the boundaries of the triangle, the opacity will be very low, but still a valid intersection

nonetheless. Traditional renders take the closest valid intersection along a ray. This does

not work for our proposed system, as this could result in just a single triangle whose

plane lies close to the origin of the ray appearing in the image, even if the intersection

with the plane is so far from the triangle that the α value at this point will be effectively

0, and the triangle will not be visible.

We will need to devise a way to determine how to display the contributions from all

the triangles along the ray. This leads us directly into how we handle occlusion disconti-

nuities.

45

4.2 Occlusion Discontinuity

To handle the discrete operation that results from determining the surface nearest to the

camera, we again use a similar approach as taken in SOFTRAS [5], which uses an aggrega-

tion function based on the Softmax operation. We determine the colour of pixel Ij using a

weighted sum to blur together the contributions from all triangle k along the path of the

ray (Equation 4.3).

Ij =
∑
k

wk(zk, α, γ) S(xk) (4.3)

with

wk(zk, α, γ) =
α(xk, σ) exp (zk/γ)∑

j α(xj, σ) exp (zj/γ) + exp(ε/γ)
(4.4)

The weightwk of triangle k is based on the distance to the camera zk and the opacity of

the triangle α(xk, σ) at the point of intersection. γ controls the weighting of the surfaces.

Decreasing γ decreases the amount of blurring over the depth, as small γ weights the

closer surfaces more heavily. ε is a small constant for numerical stability. This weighted

sum removes the discrete operation of determining the closest surface and replaces it with

a continuous and differentiable sum operation. By construction, all the weights along the

ray will sum to 1. This ensures that no additional colour is being added to the pixel. The

function is also monotonically decreasing as zk increases, which ensures that the closer

surfaces are weighted more heavily than surfaces that are further away.

Introducing this sum over all the triangles intersected along a ray creates another

difficulty. Computing the shading S(xk) for every triangle k intersected by a given ray

requires casting additional rays to determine the direct and indirect lighting. Doing this

for multiple surfaces, for multiple bounces, would result in an exponential increase in

the number of rays being cast. This is undesirable as the computation power needed

46

would exponentially increase with the number of triangles in the scene and the number

of bounces considered.

We propose a numerical method to approximate this sum while using a constant

number of rays. We use importance sampling [28] to estimate Equation 4.3. We impor-

tance sample one surface along the ray based on the weight of its contribution wk in the

sum, and trace additional rays for determining shading for only this surface. Since we

pick only a single surface to compute shading for, we can keep a constant number of rays.

This sampling step introduces some additional noise in areas where objects are over-

lapping. This noise is reduced by having multiple samples per pixel, which is already

something that is required in regular ray tracing. The importance sample is based on the

weighting of the surface and the value of α at the shading point, which helps to reduce

the variance of the estimate.

∑
k

wk(zk, α, γ) S(xk) ≈
wi(zi, α, γ) S(xi)

p(i)
(4.5)

with

wk αk ∼ p(i) (4.6)

4.3 Modifications to the Path Tracing Algorithm

In this section we breakdown more precisely how the blurring parameter α and the depth

weighting function wk are used to modify the standard path tracing algorithm.

Given the point of intersection x on the triangle in the scene seen when casting a ray

through pixel Ij , the colour of the pixel should be given by the following Monte Carlo

estimator for the rendering equation [14]

47

Figure 4.2: Since all the surfaces along the ray are transparent, they all con-

tribute to calculating the colour seen by the eye. Calculating the shading fi at

each triangle would involving casting additional rays for each surface, leading

to an exponential increase in the number of rays being traced. We instead sam-

ple one surface and weight its contribution to produce a one sample estimate

for the sum.

Ij = Le(x,wo) +
1

N

N∑
k=1

f(x,wk
i , wo)Li(x,w

k
i , wo)(n · wk

i)

p(wk
i)

(4.7)

This is the Monte Carlo estimator for the rendering equation. The indirect illumina-

tion integral is estimated using a Monte Carlo integration. When path tracing, the Monte

Carlo integration term uses one sample. Which simplifies the equation to:

Ij = Le(x, ωi, ωo) +
f(x, ωi)Li(x, ωi)(n · wi)

p(wi)
(4.8)

48

An image rendered with only a single path traced for each pixel is very noisy. To

reduce the noise in the image we cast multiple rays per pixel and average their contribu-

tions. This effectively amounts to finding many light paths originating from the pixel.

Ij =
1

N

N∑
k=1

[
Le +

f(x, ωk
i , ω

k
o)Li(x, ω

k
i)(n · ωk

i)

p(ωk
i)

]
(4.9)

Equation 4.9 for Ij contains implied discrete operations that determine the edges of

geometry and which objects appear in front of others. We need to do some reformulation

to remove these implied discrete operations included here.

In Equation 4.10, we modify the single sample MC estimator from Equation 4.8. We

replace the discrete step of determining the closest surface (i.e. the visible surface that is

shaded) with a sum over all triangles along a ray. This ensures that triangles behind the

closest one will have some contribution to the radiance travelling along the ray and the

output image. Determining the edges of triangles (essentially, checking if a ray intersects

the interior of a triangle) is replaced by the α(x, σ) term, which smoothly modulates the

intensity of the triangle over the plane the triangle lies in. These changes effectively re-

move the discrete components from the computation of the image. These can be applied

recursively for bounces at greater depth.

Ij =
S∑

k=1

wkαk

[
Lk
e +

fk(xk, ω
k
i , ω

k
o)Li(xk, ω

k
i)(nk · ωk

i)

p(ωk
i)

]
(4.10)

where the sum is over S, which is the set of triangles intersected along the ray, αk is

explained in Section 4.1, and wk is the weighting function shown in Equation 4.4.

To reduce the noise from the single sample in Equation 4.10, we can cast multiple

samples per pixel to reduce the noise, as in Equation 4.9.

49

To avoid calculating every term in the sum for Equation 4.10, we use a one-sample

Monte Carlo to calculate an estimate for it. This Monte Carlo sampling selects a single

surface s which we calculate the shading for by tracing subsequent rays from it.

Ij ≈
wsαs

q(ws, αs)

[
Ls
e + fsL

s
i (ns · ωs

i)

p(ωs
i)

]
(4.11)

The surface k is randomly sampled from the multinomial distribution q which is

constructed by normalizing the product of the weight and transparencie,

q(wi, αi) =
wi · αi

S∑
k=1

wk · αk

(4.12)

4.4 Explicit Connections and Shadows

To reduce noise in the rendered image, we implement explicit path tracing. For each

shading point, an emitter is selected with a uniform probability. A point on the emitter is

selected uniformly over its interior (i.e. no blur applied) area. A shadow ray is then traced

to determine visibility between the shaded point and the selected point on the emitter.

Visibility is computed as transmission
∏S

i=k(1 − α(xk, σ)) along the shadow ray for

intersections k that occur between the shaded point and the emitter. This factor attenuates

the emitted radiance Le. The attenuated radiance is then modulated by the Bidirectional

Reflectance Distribution Function (BRDF) and the cosine foreshortening term to calculate

the shading at the point. The contribution is then weighted by the probability of selecting

the point on the emitter.

Since visibility in these shadow rays is differentiable due to our modifications remove

the edge discontinuities, this allows computing gradient signals from the shadow of an

object.

50

4.5 Material Model

We use a simple mixture BRDF model that has both diffuse (Lambertian) and specular

(Phong) components [17]. The advantage of this material model is that it is simple to

implement, can produce a range of materials with a good appearance and has no dis-

continuities in it. This makes it naturally differentiable and easily handled by automatic

differentiation. The BRDF is given in Equation 4.13:

fr(x, ωi, ωo) = ρd
1

π
+ ρs

n+ 2

2π
max(0, cosn(α)) (4.13)

where ρd is the diffuse albedo (reflectivity), ρs is the specular albedo, n is the Phong

exponent (higher values yield a more mirror-like specular reflection) and α is the angle

between the direction of perfect specular reflection of ωo and the direction of the incoming

lighting.

4.6 Textures

We implemented basic texture mapping for meshes. Textures are can be loaded from an

image file, which gets converted to a tensor of size (H ×W × 3) for the associated mesh.

When an intersection point is found on the mesh, we sample the texture using the UV co-

ordinates of the triangle’s vertices to obtain an albedo value. We use bilinear interpolation

when sampling the texture to improve the appearance of the mapped texture.

The values stored in the texture map and the bilinear interpolation step are naturally

differentiable with no special attention needed. To handle areas outside of the triangle,

the texture is wrapped to cover the extended area.

51

4.7 Camera Effects

Camera effects can be added to rendered images to simulate features that arise from the

physical properties of a camera and lens. We implement two of the most common camera

effects differentiably, namely depth of field and motion blur. To our knowledge, ours is

the first work to include differentiable camera effects.

4.7.1 Depth of Field

Depth of field is an effect that results from the focal length of the lens and the size of the

aperture in physical cameras. It results in objects far away from the focal plane being

blurred. This effect is simulated by displacing (often called jittering) the origin of the rays

traced from the camera in the plane perpendicular to the view direction while ensuring

that the rays intersect the focal plane at the same point as if the origin had not been altered.

Several of these jittered images are rendered and averaged together to achieve the effect.

This averaging operation is naturally differentiable.

4.7.2 Motion Blur

Motion blur is an artifact that occurs in images when objects are moving due to the finite

shutter speed of the camera. It results in a drawn-out blur of the object along the direction

of motion. Motion blur is achieved by assigning objects a velocity, sampling the scene at

multiple time steps and averaging the resulting rendered images. This averaging opera-

tion is naturally differentiable. We limit our implementation to only linear velocities.

52

4.8 Caustics and Light Tracing

In our renderer, we implement light tracing and simplified refractive materials. The re-

fractive materials we implement are limited to being only a surface (i.e. they have no

thickness or volume), where a purely refractive event takes place (i.e. no light is scattered

back in the incident direction). The materials are also completely clear, having no tint or

colouration to them. They are only described by their index of refraction (IOR), and a

normal map if desired. To relate the value of the pixels in the caustic to the material that

casts them, we multiply the radiance passing through the glass pane by the α value. This

ensures that the shading of the caustic is directly parametrized by the vertices of the glass

material, and we can compute gradients for the position of the glass material based on

the caustic.

This simplified material model is sufficient to simulate caustics, an optical phenomenon

that results from the focusing of energy by a refractive material such as glass. Visually,

this manifests as an area of brightness. We can combine this simple material with a nor-

mal map on the surface to create interesting caustics.

One drawback of using light tracing with a point camera model is that purely spec-

ular interactions (such as refraction) are unable to connect to the camera. That is to say,

they have a probability 0 of randomly interesting the camera. This results in glass and

mirrors appearing completely black when viewed directly by the camera.

To overcome this, we render an image using forward path tracing (i.e. starting from

the camera), handling the refractive events appropriately, then we combine the light

traced image and forward path traced image. The two images are combined using a

simple averaging weighted by the number of samples done for each pixel. For pixels

that received no samples in the light tracing pass (appearing completely black), the light

traced image has weight 0 and the path tracing image contributes with a weight of 1. For

pixels where the caustics appear, there are a significant number of light traced samples

landing there, which ensures that the light trace image is weighted significantly there.

53

One drawback of this weighting scheme occurs when there is a significant mismatch be-

tween the number of samples done with each pass. If a very large number of SPP are

done for the forward pass image with relatively few light paths traced, the forward im-

age contribution will dominate the light traced image, resulting in the caustics appearing

significantly dimmer or not at all.

An additional simplifying assumption is made during the forward pass. When com-

puting the shadow rays for the explicit connections to the light sources, refractive surfaces

are assumed to be completely transparent and not refract light passing through them,

which means they are effectively ignored to compute shadow ray visibility. This is some-

times called a ”straight line” approximation.

54

Chapter 5

Results

We implemented our differentiable renderer in Python making use of the PYTORCH li-

brary [23]. Using PYTORCH conferred several advantages: parallelization on the GPU

by implementing ray tracing as tensor operations, built-in automatic differentiation, opti-

mization tools, and easy integration into Python-based machine learning pipelines. Other

people also seemed to have realized these advantages, and during the development of our

project, several rasterization focused PYTORCH based differentiable renderers appeared,

including PYTORCH3D [29] and KAOLIN [30]. These packages focus more on offering

more complete tool sets for loading and manipulating 3D data, and use previously dis-

cussed methods for their differential rendering step. PYTORCH3D implements a method

based on SOFTRAS [5], and KAOLIN implements DIB-R [6].

5.1 Forward Render Examples

In Figures 5.1 – 5.2, we present example images that show the effects of modifying the

edge blurring parameter σ and the depth blurring parameter γ. The images are rendered

with 5 bounce global illumination with Russian roulette termination and 1024 SPP.

55

As γ decreases, the closer surfaces are weighted more heavily. One of the triangles

that composes the back wall is set to be magenta, to provide some contrast when visual-

izing the effect of different values of γ.

As σ decreases, the blurring of the triangles decreases. When the values are suf-

ficiently small, the rendered image has few observable artifacts when compared to an

image generated with standard rendering techniques.

(a) σ = 1e−3 (b) σ = 1e−4 (c) σ = 1e−5 (d) No blur

Figure 5.1: The blur around the edges of the triangles decreases as σ decreases.

(a) γ = 1e2 (b) γ = 1e1 (c) γ = 1 (d) No blur

Figure 5.2: The blur over the depth of the objects decreases as γ decreases.

5.2 Optimizations

In this section, we present an application of our differentiable renderer that traditional are

not capable of: optimizing scene parameters to match a reference image using gradient

descent. In these experiments, a scene is rendered differentiably and the resulting image

56

is compared to the reference image. By calculating a scalar loss between the reference im-

age and the rendered image, we can compute gradients for the desired scene parameters

(ex.: object position, material properties) and use the gradient to compute an incremental

update to the parameters to reduce the loss, which modifies the scene to more closely

resemble the reference. Repeating this process, we can minimize the loss, and the im-

ages rendered and the underlying scene should match the reference. This procedure is

commonly referred to as analysis-by-synthesis in inverse rendering.

We use these experiments to test if our differentiable renderer is able to properly

calculate gradients with respect to different scene parameters of interest, such as the shape

and position of objects and emitters, the camera pose, material properties and textures as

well as some camera effects and caustics.

During optimizations, we render images with low samples per pixel (SPP) counts,

which results in noisy but fast estimates. These renders are then compared to the reference

image which is generated with a much higher SPP count. Optimizing based on noisy data

has been shown to not be a significant problem as long as there is sufficient data [31], and

we find that this holds true in our application.

We used Mean Squared Error (MSE) between the pixels of the current image and the

target as our loss function for the optimization. This simple choice was effective for sev-

eral optimization scenarios (vertices, specular and diffuse BRDFs, point light position).

We used the Stochastic Gradient Descent (SGD) [32] optimizer available in PYTORCH to

update the values of the parameters.

We observe that starting with larger values for σ and γ parameters and decaying

them leads to more robust optimization. This has the effect of smoothing the gradients

earlier on in the optimization and can help avoid local minima.

The loss is calculated between high dynamic range (HDR) images. In scenes with-

out visible emitters, they are lit with area lights that are explicitly sampled during the

rendering.

57

The figures in the next few sections are organized as follows:

(a) image rendered in with initialization values,

(b) image rendered with final, optimized values,

(c) the target image used to compute the loss at every iteration,

(d) the RMS error between the initial image and the target image, and

(e) the RMS error between the final image and the target image.

5.2.1 Direct Lighting

In this section, we show some examples with only direct lighting effects.

In Figure 5.3, the randomly initialized diffuse albedo of the primitives in the scene

are each independently optimized to match the reference image.

In Figure 5.4, the 3D position of the camera is optimized such that the image it views

matches a target image. The look at point and FOV of the camera is fixed.

In Figure 5.5, the position of the light source is optimized to match the target image.

The height of the light is fixed.

In these examples, the system can very accurately optimize the desired parameters.

(a) Initial (b) Final (c) Target (d) RMSE: 0.1825 (e) RMSE: 0.0145

Figure 5.3: Optimize the diffuse albedo of all primitive in the scene.

58

(a) Initial (b) Final (c) Target (d) RMSE: 0.2360 (e) RMSE: 0.0337

Figure 5.4: Optimize the position of the camera.

(a) Initial (b) Final (c) Target (d) RMSE: 0.1671 (e) RMSE: 0.0822

Figure 5.5: Optimize the position of the light.

5.2.2 Higher-Order Light Transport

In this section, we present examples that demonstrate higher-order light transport effects.

In Figure 5.6, the position of an off-screen object is optimized so that its shadow

matches a position given in a target image. In this setup, the only gradient signal for the

translation of the object is from the shadow of the triangle. The construction of shadows

in our systems allows for informative gradients to be calculated from shadows and the

optimizer can easily translate the object to the correct position.

In Figure 5.7, the rotation of the cube (3 degrees of freedom) is optimized. This image

features indirect light coming from the red and green walls which has a significant con-

tribution to the appearance of the white cube. The optimizer is able to accurately rotate

the cube.

59

In Figure 5.8, we optimize a texture on a surface that is only visible as a reflection

in a highly specular / mirror-like surface. Note that the rest of the image appears black

since the mirror-like surface and the textured surface are the only objects in the scene. The

reconstructed texture is shown in Figure 5.9. Overall, the reconstructed texture matches

the original texture quite well. However, the reconstructed texture does lack some of the

high-frequency detail in the tree branches and the pattern on the tree trunk.

(a) Initial (b) Final (c) Target (d) RMSE: 0.1216 (e) RMSE: 0.0161

Figure 5.6: Optimize the position of an off screen object based on its shadow.

(a) Initial (b) Final (c) Target (d) RMSE: 0.1182 (e) RMSE: 0.0739

Figure 5.7: Optimize the rotation of the cube (3 degrees of freedom).

5.2.3 Camera Effects

In Figure 5.10 and Figure 5.11 , we present some optimizations of scenes involving motion

blur and depth of field effects.

In Figure 5.10, the distance to the focus point of the camera is optimized. The initial

focal point falls roughly in the plane of the blue box, which causes it to appear most in

60

(a) Initial (b) Final (c) Target (d) RMSE: 0.0525 (e) RMSE: 0.0107

Figure 5.8: Optimize the texture on a surface that is only visible in a mirror-like

surface.

(a) Target (b) Final

Figure 5.9: Target texture and the texture recovered during the optimization

from Figure 5.8. We can see that the general shape of the tree is recovered, but

the high-frequency checkerboard pattern is not.

focus. The optimizer is correctly able to adjust the focal distance so that the green box is

properly in focus.

In Figure 5.11, the velocity and the geometry (vertex positions) of the object are op-

timized simultaneously, from a single viewpoint. Each vertex in the object is randomly

perturbed independently. This situation is quite challenging, even when the motion is

constrained to be linear. In the final image with motion blur, the appearance of the object

is improved over the initial image, but there is still some error around the edges. The

initial, final, and target images are rendered without motion blur in Figure 5.12. We can

61

see in the final image without motion blur that the final shape is better than the initial and

has captured some key features of the target, but it lacks detail particularly in the areas

where faces were only partially visible.

(a) Initial (b) Final (c) Target (d) RMSE: 0.0455 (e) RMSE: 0.0116

Figure 5.10: Optimize the distance of the focal point of the camera to match

the depth of field effect.

(a) Initial (b) Final (c) Target (d) RMSE: 0.1118 (e) RMSE: .0431

Figure 5.11: Optimize to determine the vertices and velocity of the object in an

image with significant motion blur.

5.2.4 Caustics

For the optimization of the caustics implemented in our system, we found that optimiza-

tions using MSE loss struggled. For these cases, we investigated some other loss func-

tions. A loss function that we found to have an improvement over MSE was the symmet-

ric mean absolute percentage (SMAPE) error function. This loss function is supposed to

have stable behaviour with HDR images [33], and we found this to be true in our appli-

cation.

62

(a) Initial (b) Final (c) Target

Figure 5.12: Snapshots from the motion blur geometry optimization, with no

motion blur. Not used in the optimization process.

These examples use only light tracing. As a result, the glass pane appears black in

the image, as the specular surface cannot form a direct connection to the camera. Light

tracing is necessary to efficiently render caustics when using a point camera.

In Figure 5.13, the index of refraction (IOR) of a glass sheet with a normal map that

creates a lensing effect is optimized. There is only a single parameter for the whole glass

pane. The system can easily optimize the parameter.

In Figure 5.14, the position of the caustic optimized. Most of the gradient signal in

this example comes from the caustic itself, rather than from the glass pane that is only

visible from a very sharp angle. This is demonstrated in Figure 5.15. We are able to

reposition the glass pane so that the caustic matches the target image more closely, but

the optimization gets caught in a local minimum and is not able to perfectly reproduce

the target image. This situation appears to be difficult since there is no significant contrast

between the area of the caustic and the diffuse shading on the surface.

We experimented with smoothing out the edges of the caustic by sampling a Phong

lobe around the refraction direction, but this did not result in a significant improvement.

We also tried this example with the caustic produced with the normal map as in

Figure 5.13, but in that case, the system was not able to translate the glass pane to the

correct position at all.

63

(a) Initial (b) Final (c) Target (d) RMSE: 0.1374 (e) RMSE: 0.0486

Figure 5.13: Optimize the index of refraction of a sheet of glass with a normal

map that focuses the light to produce a lens effect.

(a) Initial (b) Final (c) Target (d) RMSE: 0.0999 (e) RMSE: 0.0738

Figure 5.14: Optimize the position of the caustic.

5.3 Renderer Gradients

In Figure 5.16, we render a torus with our differentiable rendering method with different

values of σ and visualize the corresponding gradients for a translation in the x-direction

(right positive, left negative). The reference image shows the object with no blurring. In

the heat map images of the gradients, red denotes an increase in the average RGB value

of the pixel (i.e. moving from black to red in this case), while blue denotes a decrease.

In the σ = 1e−4 image, while the rendered image of the torus is quite blurring, the

gradient heat map paints a clear picture of which pixels would increase or decrease in

colour as the torus moves to the right.

We can see as we decrease the value of σ, the rendered image more closely resembles

the reference image. The image with σ = 1e−6 is almost identical to the reference, apart

64

(a) (b)

Figure 5.15: An image with a caustic from Figure 5.14. The gradients for a

translation of the glass pane in +x direction (red arrow). The gradients for the

translation of the plane appear in the area of the caustic.

from the noise that is a result of using fewer SPP for generating the gradient images.

However, as σ decreases the gradients do appear to become noisier.

5.4 Comparison with REDNER

In Figure 5.17, we show an example where our system can successfully optimize the

placement of an object, while the REDNER [8] fails. In this example, in which only the

diffuse albedo of surfaces directly visible by the camera, the torus is initially displaced

away from the center of the image. The initial position of the torus is such that none

of the pixels of the initial image and the target image overlap, and part of the object is

off-screen.

In these cases, the gradients calculated by REDNER cause the optimizer to shift the

object off-screen so that the pixels that are currently covered by the object become black

which is a local minimum in the loss function. Part of the object being off-camera is

65

Reference

(a) σ = 1e−4 (b) σ = 1e−5 (c) σ = 1e−6

Figure 5.16: Pixel gradients for translation in the x-direction (from left to right)

with different values of σ. Image is rendered with 16 SPP and direct lighting

only.

important for this to happen. If we increase the field of view such that the entire off-

center image, REDNER is again able to center the object correctly, as we show in Figure

5.18.

When part of the object is not visible in the image, the gradients for it are not cal-

culated. We think that this causes an imbalance in the total gradient for the translation

of the torus, which drives it further off-screen. The missing pixels do not contribute gra-

dient information that moving the object further away from the center is not actually an

improvement.

In our system, we can successfully optimize the position of the torus when it is par-

tially off-screen. It does struggle somewhat, as the torus does not seem to take a direct

path to the center of the image, instead moving up and right, before finding the center.

The regularization introduced by our methods widens the footprint of the torus in the

early images of the optimization so that it overlaps partially with the position of the object

66

in the target image. We think that this has the effect of smoothing out the loss landscape,

making it more convex and easier for the optimizer to find a path to the global minimum.

As the optimization progresses, the regularization in the image is decreased, and the op-

timizer can correctly fine-tune the position after the coarse initial updates brought it to

approximately the correct position.

Target

O
urs

Start −→ −→ End

R
E

D
N

E
R

Figure 5.17: Ours vs REDNER for the translation of a torus. The image of the

torus in its initial position does not overlap with its target, and the torus is par-

tially off-screen. With this setup, REDNER fails to position the torus correctly.

Our system introduces blur, which smooths the loss and allows for the cor-

rect position to be found with this adverse initialization. The images between

‘Start‘ and ‘End‘ are taken at illustrative points of the optimization.

Target Start −→ −→ Final

Figure 5.18: Another translation of a torus in REDNER. In this example, the

FOV is wider than in Figure 5.17 and the whole object is visible in the initial

position. REDNER can correctly position the object to match the target.

67

SOFTRAS DIB-R REDNER MITSUBA 2 Ours
Single Objects 4 4 4 4 4

Full Scenes 6 6 4 4 4

GI 6 6 4 4 4

Textures 7 4 4 4 4

Emitters 6 7 4 4 4

Camera Effects 7 6 6 6 4

Caustics 6 6 6 4 7

Performace 7 7 6 6 7

Scalability 6 6 4 4 7

Flexibility 6 6 4 4 4

Occlusion 4 7 6 6 4

Gradients 7 7 4 7 7

Noise-free 4 4 6 6 6

Tuning 4 4 6 7 4

Table 5.1: Comparison of characteristics of some differentiable rendering sys-

tems. Single Objects denotes if the differentiable system can calculate gradients

for an image of a unique object. Full Scenes denotes if the system can calcu-

late gradients for scenes containing multiple objects. GI refers to if the system

supports global illumination. Textures indicates if the method supports tex-

tures. Emitters denotes if the system can calculate gradients for light sources.

Camera Effects and Caustics indicate if the system supports these features re-

spectively. Performance considers capability for rapid rendering in applications

such as in deep learning. Scalability refers to performance with larger num-

bers of primitives and higher image resolution. Flexibility is whether the sys-

tem is designed to support arbitrary shading. Occlusion denotes if the method

can compute gradients for occluded surfaces. Gradients refers to the correct-

ness/unbiasedness of gradients. Noise-free systems do not rely on random

sampling. Tuning refers to tunable parameters that affect the rendered image

or gradients.

68

Chapter 6

Discussion

6.1 Benefits

One advantage of our approach compared to other physically based differentiable render-

ing systems is that we do require tracing extra auxiliary rays to compute gradients, nor

do we need any sort of data structure to keep track of the edges/silhouettes of objects. In

REDNER and MITSUBA 2, these steps are required and add a large amount of overhead

computation to calculate the gradients.

A similar idea of blurring scene geometry to remove discontinuities was investigated

by Rhodin et al. [34]. Their method involves first fitting the geometry first to a number

of spheres and then replacing the spheres with Gaussian blurs. They did not show global

illumination, even though their method seems capable of support it.

6.1.1 Implementation

Implementing this system using Python and PYTORCH worked well. While, other dif-

ferentiable rendering methods typically have dependencies on C++ libraries, which can

69

Figure 6.1: Rhodin et al. [34] approximate geometry with Gaussian blurs that

emit light. The pixel color is the fraction of source radiance that is emitted

along the ray and reaches the camera. The top of the figure shows a ray leaving

the camera and passing through two 3D Gaussian densities. The bottom shows

the light being transport along the ray. The density along the ray is a sum of 1D

Gaussians (green). The transmittance (gray) decays from one as we move away

from the camera. The fraction of reflected light that reaches the camera (red

and blue areas) is the radiance used to compute the visibility. Source: Rhodin

et al. [34]

often be difficult to configure properly on a variety of systems, Python and Python li-

braries are extremely portable and system agnostic.

Using PYTORCH allowed us to easily leverage GPUs to speed up the rendering oper-

ations. PYTORCH also includes built-in automatic differentiation.

Another advantage of using the PYTORCH library is the ease of integration into com-

mon machine learning pipelines. PYTORCH is one of the most popular machine learning

libraries. We hope that the system we developed and the code we plan to make available

70

will find uses in the development and training of unsupervised models. Their apply their

method to pose estimation problems.

6.1.2 Camera Effects

We show some examples of our system being applied to camera effects. To our knowl-

edge, there have not been any papers published that explore this application. We find

that performing inverse rendering tasks on images with depth of field effects and mo-

tion blur are relatively easy to implement. Both of these effects involve making multiple

rendering passes and then averaging the images together. This averaging operation is

easily handled by automatic differentiation, so no special consideration has to be made.

The main complication that arises as a result of doing multiple passes is that the memory

requirements can become large since the derivative information for each pass must be

stored.

6.2 Limitations

While using PYTORCH was very convenient and easy, it may also introduce some limita-

tions. PYTORCH is optimized for operations done most commonly in machine learning,

like matrix multiplications. Our system uses a wide variety of operations, some of which

may not be as heavily optimized. It is possible that writing a custom library or custom

C++/CUDA functions focused on our use case might improve the efficiency of the ren-

derer. It also may be possible to include some analytic or compact derivative calculations

at certain parts of the rendering process, which could further increase the speed. One

use case where this reliance on PYTORCH is a significant drawback is for the rendering

of images of the gradients, as in Section 5.3. To produce these images, we compute the

gradient for each pixel, which requires a backwards pass through the computation graph

71

for each pixel in the image. There is no way to do this in a batched way utilizing the GPU

in PYTORCH, so the process is extremely slow.

One of the biggest drawbacks of our system, as it is currently implemented, is that it

scales poorly with more geometry. As the geometry in the scene becomes more complex

(i.e. more triangles) we have to test for the intersection with each of these triangles.

In traditional renderers, this is often handled by implementing an acceleration data

structure. One such example is a Bounding Volume Hierarchy (BVH), which partitions

the triangles in the scene spatially in such a way that they can be tested for intersections

as a group, reducing the computation needed from O(N) to O(logN).

Due to the way our algorithm blurs the edges of geometry outside the enclosed area

of the triangle, a traditional BVH type structure would not work, as it would these areas.

It may be possible to construct some type of BVH where padding is added around the

triangles when constructing the BVH and we accept the clipping away of areas that are

sufficiently far from the edge of a triangle and would have α ∼ 0 anyways.

Another issue with using a BVH-type structure would arise when optimizing the po-

sition or shape of objects in a scene. A BVH is useful when a scene is static; if things

in the scene move around significantly, the BVH will no longer be accurate and useful.

This could possibly be overcome without too significant of a decrease in performance

by loosely fitting the BVH to the scene, but if the geometry shifted beyond the padding,

problems would arise. An alternative would be to rebuild the BVH, either at every iter-

ation of the optimization or periodically, to ensure its accuracy. This option is not very

attractive, as building a BVH can take significant time.

Our depth weighting term can cause areas far from the camera to appear black if γ is

set to too small of a value ∼ γ < 1.

72

6.3 Differentiable Renders in General

In this section, we discuss some of the concerns and open questions related to the cal-

culation of gradients from a rendered image and the applications that make use of these

gradients.

6.3.1 Exact Gradients and Bias

In recent differentiable work, there has been discussion of the importance of producing

unbiased gradients.

In the work by Bangaru et al. [21] on “Unbiased warped-area sampling for differ-

entiable rendering“, they present a method similar to Loubet et al. [10] for computing

gradients. A core component of the Bangaru et al. work is that the method they develop

can produce unbiased estimates of the gradients, while the Loubet et al. method is bi-

ased. The bias in the Loubet et al. work is due to some approximations and assumptions

they make to simplify their computations. Bangaru et al. show that that the Loubet et al.

method is actually a special case of their method, that neglects to satisfy some conditions

that would be required for unbiased gradients.

While Bangaru et al. put significant emphasis on their unbiased estimators, in many

of their examples they actually use the consistent estimator they developed, rather than

the unbiased one, as it is faster and produces good results. This brings up the question of

whether unbiased gradients are truly necessary or even desirable. A common theme in

calculations that involving random sampling is that there is a trade-off between bias and

variance; reducing one usually means increasing the other.

In general, it is usually desirable to have unbiased gradients for stochastic gradient

descent, if these gradients are very noisy, they can be uninformative and the optimization

will have difficulty converging. In this case, it is better to have accurate and low-variance

gradients that allow a local minimum to be found in fewer iterations. However, once in

73

the vicinity of the local minimum, the bias could potentially adversely affect the conver-

gence during the last steps of optimization.

Our differentiable rendering algorithm does not produce exact gradients and intro-

duces bias into the image. However, like prior approaches [5, 6, 7], we find that during

optimization it is often not necessary to produce exact gradients, but rather ones that are

useful for finding a minimum.

6.3.2 Inclusion of Occlusion Discontinuity Differentiability

We consider surfaces that are technically out of view of the camera, as they are occluded

by other objects, similar to differentiable rendering approaches taken in rasterization-

based methods like SOFTRAS [5].

On the other hand, the physically-based differentiable renderers like REDNER [8] and

MITSUBA 2 [9] specifically disregard occluded surfaces entirely.

Considering occluded surfaces introduces some complications. Typically, the sur-

faces need to have some sort of transparency built-in, that allows for occluded objects to

still have a contribution to some pixels in the output image, and therefore gradients can

be propagated to the parameters of the object. The inclusion of this transparency can be

tricky, as it introduces bias to the image. It also complicates the computation of shadows,

and refractive surfaces as well.

While there are these complications to consider, there are also some advantages to

calculating gradients for occluded objects. For example, it can allow for the optimization

of the placement of objects in some scenarios. In SOFTRAS [5], they show a nice example

of a model of a human and show that they can properly reposition one of the hands from

the far side of the body (that would normally be out of view) to a correctly oriented pose

in front of the body. Applications such as this seem to make the inclusion of gradient

74

calculation for some occluded objects compelling, and it would be interesting to more

physically based methods that included this.

The depth blurring function we use is similar to that used in Order Independent

Transparency [35] by McGuire and Bavoil. The McGuire and Bavoil [35] work also dis-

cusses other functions for weighting transparent surfaces, that may be worth exploring

more.

6.3.3 Initialization

In differentiable rendering applications where we want to optimize something in a scene,

we first require some initial description of the scene. Sometimes obtaining this initial

description can be difficult, for example in cases where are dealing with real-world pho-

tographs. Fortunately, advances in computer vision are making it possible to obtain de-

cent initialization. However, if the initial scene description is very inaccurate, any step

involving differentiable rendering will likely fail.

6.3.4 Self Intersections

In systems like Mitsuba 2 [10, 9], the authors state that their method for handling edge

discontinuities relies on there being only one type of discontinuity, at the edges of silhou-

ettes of objects. The system outlined in “Differentiable Path Space Rendering“ [12], states

similar assumptions.

One situation that may arise when using differentiable rendering for the optimization

of scene geometry is that another source of discontinuities may be introduced: intersec-

tions of geometry. Geometry intersections could arise in the case of trying to position an

object in a scene. For example, trying to position a cup on a table. For some iterations of

the optimizations, the cup could be translated in a way that it intersects with the surface

of the table.

75

Additionally, another situation in which geometry intersection could arise would be

in cases where we are trying to optimize the shape of an object. If the displacements of the

vertices in the mesh being optimized are not constrained in some way, it could be possible

for the vertices to be moved in such a way that the mesh now has self-intersections.

6.4 Implicit Representations in Differentiable Rendering

In rendering, most commonly we deal with explicit representations of objects or scenes.

Some examples of common explicit representations are meshes, voxel grids, and point

clouds. In these representations, the surface, shape or volume is described by exhaus-

tively listing out every single triangle, voxel or point we want to be included in the im-

age. The memory usage of these types of representations scales proportionally to the

complexity or detail of whatever we are trying to represent. While these representations

are often convenient and useful, they have some inherent difficulties when it comes to

incorporating them into some machine learning applications. They can have difficulties

representing curved surfaces, and the topology (connectivity) can be fixed, which can

cause difficulties when we wish to modify the mesh with an automated system.

An implicit representation is a way of representing a scene or an object without di-

rectly listing out a series of primitives. For example, if we wanted to render a sphere, we

could solve for the intersection between a ray R(O, d) = O + td, t ≥ 0 and the equation

describing a sphere with radius r centered at the origin x2 + y2 + z2 = r2 . By using

an equation to describe the sphere, we avoid having to tessellate the sphere with square

or triangular primitives, which would introduce some approximation error as these flat

primitives cannot perfectly capture the curvature of the sphere. Storing the parameters

that describe the sphere (only the radius in this case) is also more compact than, for ex-

ample, storing a list of the many faces and vertices that would be required to give a

sufficiently smooth-looking sphere.

76

These representations have been investigated more in recent years, with multi-layer

perceptron (MLP) and other neural network models, being used to store the data that

represents the scene or object. Implicit representations have several advantages. Implicit

representations can be more compact in terms of memory usage when representing highly

detailed structures, and as they represent scenes in a continuous manner, they can be more

amenable to machine learning systems.

One of the current downsides of implicit representations is that they typically have to

be converted to explicit representations, to work with standard rendering systems. This

step can introduce significant overhead in rendering time.

In 2020, Neural Radiance Fields (NeRF) [36] appeared. In this work, the authors

trained an MLP to output the incoming radiance to give a point and a direction. They did

this by optimizing the MLP to fit a digital scene with global light transport effects viewed

from multiple camera angles, and the MLP was able to effectively generalize what the

scene would like from novel camera angles. This work produced some delightful scenes

where the camera could be moved around and the scene could be rendered from the novel

positions with complex light transport effects simply by querying the MLP.

This work spawned many follow-ups in short order, such as D-NeRF [37] which can

produce so-called “nerfies“ of faces from cellphone captured video, and DONeRF [38]

which adds a time dimension allowing for novel viewpoints to be generated in a video.

Other implicit representations, such as Neural Signed Distance Functions (SDF), have

also become seen increased interest and success [39]. These representations are typically

an MLP or NN that can be queried with a point in space, and they return the distance

to the surface of the scene or object, with a positive sign for outside and a negative sign

if the point lies inside. By determining the zero level set of the function, the surface of

the object can be recovered. The advantage here is that these representations can capture

large or detailed scenes with a reduced memory footprint.

77

Figure 6.2: The NeRF [36] method fits a continuous 5D representation (volume

density and view-dependent colour at any continuous location) of a scene from

a set of input images. A technique similar to raymarching is used to accumu-

late samples from the scene representation along rays to render the scene from

any viewpoint. Here, a set of 100 input views of a synthetic drum kit scene

are randomly captured on a surrounding hemisphere and used to generate the

NeRF. Then, two novel views were rendered using the NeRF. Source: Mildenhall

et al. [36]

Utilizing implicit representations in differentiable rendering may help to overcome

difficulties in reconstructing/representing geometry. One of the biggest issues when try-

ing to optimize the geometry of a mesh is that the topology of the mesh is fixed. This

creates problems where the genus of the target does not match the genus of the start-

ing mesh. For example, if we start with a sphere mesh (genus 0, no holes) and want to

transform it into a donut or a coffee cup with a handle (both genus 1 shapes, 1 hole), we

would require changing topology (connectivity) of the vertices in the mesh to add a hole.

Figuring out exactly how to change the topology to achieve the desired target is very

challenging, and is something that is currently not supported in differentiable renders or

ML models that integrate differentiable renders.

78

Chapter 7

Conclusion

We presented our novel method for differentiable rendering with global illumination.

Our method is based on the idea of regularizing the discontinuities that appear in the

rendering of images, to make the rendering function differentiable. While this introduces

some bias into the rendered image, it admits the computation of useful gradients without

the need for tracing additional rays or data structures for storing edge information.

We showed how our method can be used in a variety of inverse rendering cases,

optimizing material properties, camera placement, and object positions and geometry.

We also show how camera effects such as motion blur and depth of field can be easily

integrated into differentiable renderer, and how parameters related to these effects can be

automatically determined. We also explore some simplified differentiable caustics.

While our system has some limitations when it comes to the speed and number of

primitives it could efficiently handle, the underlying theory of the approach is simple and

effective.

Differentiable rendering, particularly physically-based differentiable rendering, is a

field that has recently seen significant progress and interest. It will be interesting to see

how the field will progress in the coming years. Something important to the continued

79

interest and advancement in this field will likely be finding an application where the com-

plex light transport that physically based rendering can handle allows for improvements,

over the faster rasterization methods. At the time of the writing of this thesis, most of the

physically based differentiable renderers are limited to working on synthetic data

Hopefully, physically-based differentiable rendering will find its place in planning

the placement of light sources or windows in architectural simulations, analyzing weather

satellite images based on volumetric scattering in cloud formations, helping to bridge the

sim2real gap in reinforcement learning, holography, or in some other clever way.

7.1 Differentiable Rendering – Perspectives and Future Work

There are still some effects that are common in rendering that have not appeared in dif-

ferentiable rendering, such as subsurface scattering. Subsurface scattering happens when

light can penetrate a shallow distance into a material before bouncing out. This effect

contributes strongly to the appearance of skin (particularly paler skin tones) and coloured

liquids such as milk.

Facilitating the ease of integration of differentiable rendering into high-level appli-

cations and machine learning seems to be a priority for everyone working in the field.

REDNER became available as a pip package with python functions for all its features and

MITSUBA 2 released with one of its core features being fine-grained python bindings.

General rasterization-based packages like NVDIFFRAST [40] and PYTORCH3D [29] have

also appeared over the last couple of years.

80

Bibliography

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012.

[2] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[3] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim

Kehl, and Adrien Gaidon. Differentiable rendering: A survey. arXiv preprint

arXiv:2006.12057, 2020.

[4] Matthew M. Loper and Michael J. Black. Opendr: An approximate differentiable

renderer. In European Conference on Computer Vision, pages 154–169. Springer, 2014.

[5] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differentiable

renderer for image-based 3d reasoning. The IEEE International Conference on Computer

Vision (ICCV), Oct 2019.

[6] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaakko Lehtinen, Alec Jacob-

son, and Sanja Fidler. Learning to predict 3d objects with an interpolation-based

differentiable renderer. In Advances in Neural Information Processing Systems, pages

9609–9619, 2019.

[7] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer,

2017.

81

[8] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable

monte carlo ray tracing through edge sampling. ACM Trans. Graph. (Proc. SIGGRAPH

Asia), 37(6):222:1–222:11, 2018.

[9] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. Mitsuba 2: A

retargetable forward and inverse renderer. Transactions on Graphics (Proceedings of

SIGGRAPH Asia), 38(6), November 2019. doi: 10.1145/3355089.3356498.

[10] Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. Reparameterizing dis-

continuous integrands for differentiable rendering. ACM Transactions on Graphics,

December 2019.

[11] Merlin Nimier-David, Sébastien Speierer, Benoı̂t Ruiz, and Wenzel Jakob. Radia-

tive backpropagation: an adjoint method for lightning-fast differentiable rendering.

ACM Transactions on Graphics (TOG), 39(4):146–1, 2020.

[12] Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. Path-

space differentiable rendering. ACM Transactions on Graphics (TOG), 39(4):143–1,

2020.

[13] Shuang Zhao, Wenzel Jakob, and Tzu-Mao Li. Physics-based differentiable ren-

dering: From theory to implementation. In ACM SIGGRAPH 2020 Courses, SIG-

GRAPH 2020, New York, NY, USA, 2020. Association for Computing Machinery.

ISBN 9781450379724. doi: 10.1145/3388769.3407454. URL https://doi.org/10.

1145/3388769.3407454.

[14] James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph., 20(4):143–150,

August 1986. ISSN 0097-8930. doi: 10.1145/15886.15902. URL https://doi.org/

10.1145/15886.15902.

[15] J Carlson. Monte carlo methods and applications in nuclear physics. Technical re-

port, Los Alamos National Lab., 1990.

82

https://doi.org/10.1145/3388769.3407454
https://doi.org/10.1145/3388769.3407454
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902

[16] Martin H. Weik. Snell’s law, pages 1607–1607. Springer US, Boston, MA, 2001. ISBN

978-1-4020-0613-5. doi: 10.1007/1-4020-0613-6 17633. URL https://doi.org/

10.1007/1-4020-0613-6_17633.

[17] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering: From

Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 3rd edition, 2016. ISBN 0128006455.

[18] Eric Veach and Leonidas Guibas. Bidirectional estimators for light transport. In Geor-

gios Sakas, Stefan Müller, and Peter Shirley, editors, Photorealistic Rendering Tech-

niques, pages 145–167, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg. ISBN

978-3-642-87825-1.

[19] Henrik Wann Jensen. Realistic image synthesis using photon mapping, volume 364. Ak

Peters Natick, 2001.

[20] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Progressive photon map-

ping. In ACM SIGGRAPH Asia 2008 papers, pages 1–8. 2008.

[21] Sai Bangaru, Tzu-Mao Li, and Frédo Durand. Unbiased warped-area sampling for

differentiable rendering. ACM Trans. Graph., 39(6):245:1–245:18, 2020.

[22] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Au-

tomatic differentiation in pytorch. 2017.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-

torch: An imperative style, high-performance deep learning library, 2019.

[24] Wenzel Jakob. Enoki: structured vectorization and differentiation on modern pro-

cessor architectures, 2019. https://github.com/mitsuba-renderer/enoki.

83

https://doi.org/10.1007/1-4020-0613-6_17633
https://doi.org/10.1007/1-4020-0613-6_17633

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,

2017.

[26] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks, 2014.

[27] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-

ing adversarial examples, 2015.

[28] Peter W Glynn and Donald L Iglehart. Importance sampling for stochastic simula-

tions. Management science, 35(11):1367–1392, 1989.

[29] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo,

Justin Johnson, and Georgia Gkioxari. Accelerating 3d deep learning with py-

torch3d. arXiv:2007.08501, 2020.

[30] Krishna Murthy J., Edward Smith, Jean-Francois Lafleche, Clement Fuji Tsang,

Artem Rozantsev, Wenzheng Chen, Tommy Xiang, Rev Lebaredian, and Sanja

Fidler. Kaolin: A pytorch library for accelerating 3d deep learning research.

arXiv:1911.05063, 2019.

[31] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika

Aittala, and Timo Aila. Noise2noise: Learning image restoration without clean data.

arXiv preprint arXiv:1803.04189, 2018.

[32] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.

[33] Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill,

David Adler, Mark Meyer, and Jan Novák. Denoising with kernel prediction and

asymmetric loss functions. ACM Transactions on Graphics (TOG), 37(4):1–15, 2018.

[34] Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Christian

Theobalt. A versatile scene model with differentiable visibility applied to generative

84

pose estimation. In Proceedings of the IEEE International Conference on Computer Vision,

pages 765–773, 2015.

[35] Morgan McGuire and Louis Bavoil. Weighted blended order-independent trans-

parency. Journal of Computer Graphics Techniques (JCGT), 2(2):122–141, December 2013.

ISSN 2331-7418. URL http://jcgt.org/published/0002/02/09/.

[36] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-

mamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for

view synthesis. In ECCV, 2020.

[37] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman,

Steven M. Seitz, and Ricardo Martin-Brualla. Deformable neural radiance fields.

arXiv preprint arXiv:2011.12948, 2020.

[38] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Chakravarty R. Alla

Chaitanya, Anton Kaplanyan, and Markus Steinberger. Donerf: Towards real-time

rendering of neural radiance fields using depth oracle networks, 2021.

[39] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek

Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. Neural geo-

metric level of detail: Real-time rendering with implicit 3D shapes. arXiv preprint

arXiv:2101.10994, 2021.

[40] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo

Aila. Modular primitives for high-performance differentiable rendering. ACM Trans-

actions on Graphics, 39(6), 2020.

85

http://jcgt.org/published/0002/02/09/

	Introduction
	Contributions
	Thesis Overview

	Background
	Rasterization
	Ray Tracing
	The Rendering Equation
	Solving the Rendering Equation

	Monte Carlo Integration
	Monte Carlo Integration in Rendering

	Caustics and Light Tracing
	Camera Effects

	Differentiable Rendering
	Discontinuities and Differentiability
	Related Work
	Rasterizers
	Ray Tracers

	Automatic Differentiation
	Applications

	Methodology
	Edge Discontinuity
	Occlusion Discontinuity
	Modifications to the Path Tracing Algorithm
	Explicit Connections and Shadows
	Material Model
	Textures
	Camera Effects
	Depth of Field
	Motion Blur

	Caustics and Light Tracing

	Results
	Forward Render Examples
	Optimizations
	Direct Lighting
	Higher-Order Light Transport
	Camera Effects
	Caustics

	Renderer Gradients
	Comparison with Redner

	Discussion
	Benefits
	Implementation
	Camera Effects

	Limitations
	Differentiable Renders in General
	Exact Gradients and Bias
	Inclusion of Occlusion Discontinuity Differentiability
	Initialization
	Self Intersections

	Implicit Representations in Differentiable Rendering

	Conclusion
	Differentiable Rendering – Perspectives and Future Work

